TE

GAZ
. A3 ort No. FHWA-RD-74-64
NO.
FHVA- gnomic evaluation of mobile no modular 74-c4. USIIIG SHIPMENTS BY HILHWAY

Vol. II Appendices

W. D. Glauz, B. M. Hutchinson, and D. R. Kobett

April 1974
 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

Prepared for

USS. DEPARTMENT OF TRANSPORTATION
Federal Highway Administration
Offices of Research and Development
Washington, D.C. 20590 and
U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT

Washington, D.C. 20410

The contents of this report reflect the views of Midwest Research Institute, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation or the Department of Housing and Urban Development. This report does not constitute a standard, specification or regulation.

1. Report No. 2. Government Accession No. $\frac{1}{2}$ FHWA-RD-74-64i	3. $\frac{\text { Recifient's Cotolog No. }}{\text { Library }}$
4. Tiile ond Subtitle $4=$ cónomic Evaluation of Mobile and Modular Housing Shipments by Highway Vol. II. Appendices.	$\begin{aligned} & \text { 5. Report Dote } \\ & \text { April } 1974 \\ & \hline \text { 6. Periforming Orgonization Code } \end{aligned}$
7. Author's) W. D. Glauz, B. M. Hutchinson, D. R. Kobett	8. Performing Organiz zation Report No. MRI-3744-E
9. Performing Organizotion Nome and Address Mi dwest Research Institute 425 Volker Boulevard Kansas City, Missouri	$\begin{array}{\|l\|} \hline \text { 10. Work Unit No. } \\ \hline \text { 11. Controct or Gront No. } \\ \text { DOT-FH- } 11-7999 \\ \hline \text { 13. Type of Reportiond Period Coverea } \\ \hline \end{array}$
12. Sponsoring Agency Name and Address U. S. Department of Transportation Federal Highilay Administration Office of Research Washington, D.C. 20590	Final Report 15 Feb. $1973-15$ Oct. 1973 14. Sponsoring Agency Code

14. Sponsoring Agency Code

TECHNICCAL ひ̆EEPGRT STANDARBD TITLE PAGE
5. Report Date
6. Performing Orgonization Code

Performing Organization Report No.
MRI-3744-E
11. Contract or Gront No.

DOT-FH-11-7989
Final Report
15 Feb. 1973-15 Oct. 1973

1. Sponsoring Agency Code

1
\square

HWA-RD-74-64
10. Work Unit No.

Itute
15. Supplementary Notes

Contract Manager - Ross Netherton

Federal Highilay Administration,
Office of Research
20590
Kansas City, Missouri

16. Abstract

The objective was to obtain data needed to reach rational decisions regarding state regulations so that wide-load movements can be made as safely as possible, without undue economic burdens to the purchasers of such homes, to the states, or to
other users of the highways. The project included extensive photographic and visual without undue economic burdens to the purchasers of such homes, to the states, or to
other users of the highways. The project included extensive photographic and visual observations of vehicular traffic in the vicinity of $12-$ and $14-\mathrm{ft}$ wide mobile and observations of vehicular traffic in the vicinity of $12-$ and $14-\mathrm{ft}$ wide mobile and
modular homes in 20 states, with about 12,000 miles being logged on 63 trips. Nearly 3,000 motorists were stopped on the highways of six states and interviewed. These interviews and associated mail-back questionnaires were analyzed to determine public opinions concerning many vehicles including mobile homes. Extensive costs and operational data were obtained from carriers of wide loads. Additionally, cost and resulation information were gathered from officials of most states.

After assembling and combining all of these data, a number of subjects were addressed, including: (1) the need for permits; (2) the advisability of multiple-trip permits; (3) permit costs; (4) permit reciprocity; (5) the advisability of divisible loads; (6) the use of divided vs two-lane roads; (7) reasonable speeds for wide loads; (8) rear lighting needs; (9) the advisability of escort vehicles; (10) differences between 12- and 14-wides; (11) differences between mobiles and modulars; (12) specific safety hazards noted; and (13) regulatory questions such as signing, flagging, etc. 17. Key Words
Traffic safety, transportation costs,
mobile homes, modular homes, oversize
loads, motor carriers, oversize permits/
regulations, escort vehicles, public 17. Key Words
Traffic safety, transportation costs,
mobile homes, modular homes, oversize
loads, motor carriers, oversize permits/
regulations, escort vehicles, public 17. Key Words
Traffic safety, transportation costs,
mobile homes, modular homes, oversize
loads, motor carriers, oversize permits/
regulations, escort vehicles, public 17. Key Words
Traffic safety, transportation costs,
mobile homes, modular homes, oversize
loads, motor carriers, oversize permits/
regulations, escort vehicles, public 17. Key Words
Traffic safety, transportation costs,
mobile homes, modular homes, oversize
loads, motor carriers, oversize permits/
regulations, escort vehicles, public
opinion.
18. Distribution Statement

No restriction. This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 177	22. Price

Form DOT F 1700.7 (8-69)
Form resulation information were gathered from officials of most states.
-

$$
J
$$

UNITED STATES GOVERNMENT
Memorandum

Transmittal of Research Report:
subsect: "Economic Evaluation of Mobile and Modular Housing Shipments by Highway"
from : Director, Office of Research Washington, D.C. 20590

то : Regional Federal Highway Administrators Regions 1, 3 - 10

DEPARTMENT OF TRANSPORTATION
FEDERAL HIGHWAY ADMINISTRATION

This report will be of interest to personnel responsible for traffic operations, traffic safety, highway systems planning and highway administration. The results of this study identify and evaluate various aspects of traffic safety and costs associated with shipment of mobile and modular housing by highway, and describe public attitudes regarding such shipments. Recommendations are made regarding the conditions under which such shipments should be permitted, and various regulatory and administrative measures which might be taken to increase their safety and acceptability.

Sufficient copies of this report are being distributed to provide four copies for each regional office, one copy for each division, and additional copies for each State highway or transportation department in amounts corresponding to their estimated need and interest. Copies of this report for the division offices and State highway and transportation departments are being sent directly to the division offices for distribution.

A limited number of additional copies of the report are available for official use from the Environmental Design and Control Division, Office of Research. Copies for the public are available from the National Technical Information Service (NTIS), Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22151. A small charge is imposed for each copy ordered from NTIS.

ERRATA
in

HIGHWAY TRANSPORTATION OF MOBILE AND MODULAR HOMES Volume II: Appendices

D-15

Comment

Change "entires" to entries"

Third paragraph, first line . Change "slide" to "film"

APPENDIX A

ANNOTATED BIBLIOGRAPHY

There is very little literature dealing with the subject of this project, "Economic Evaluation of Mobile and Modular Housing Shipments by Highway." Most information referenced touches only on a small element of the project, or simply provides a number or a concept used in the course of one or more of the analyses.

The most highly utilized documents in this project were copies of the individual states' regulations concerning the movement of oversize loads. These documents provide the formal basis under which the carriers operate. The major common carriers have complied compendia of these regulations which serve as basic reference documents for their drivers and agents. The compendia summarize the pertinent parts of the state regulations as they apply to mobile and modular housing transportation and, in many cases, include the effects of additional operational procedures and interpretations. The compiling and continual updating of such compendia is a monumental task, as the state laws and their interpretations undergo periodic change. Appendices B and C of this report contain summaries, in tabular form, of the state regulations and the compendia, as of 1 July 1973.

Other basic source documents used in this study are the I.C.C.approved tariffs published by the Mobile Homes Carriers Conference, Inc., 501 13th Street, N.W., Washington, D.C. 20004. Three of these tariffs are of importance to this project. They are the MF-I.C.C. No. 23 (Mobile Home Initial Movement Tariff), MF-I.C.C. No. 24 (Modular Buildings Tariff) and MF-I.C.C. No. 25 (Mobile Home Secondary Movement Tariff). Initial movements are those from manufacturer to dealer or from dealer to first owner. All other moves are secondary moves. The tariffs detail not only the allowed basic line-haul charges but also the charges which will be levied as a result of add-ons such as permit acquisition, special lighting, escorts, special power, etc.

Various compacts of state highway officials have banded to promote regulatory uniformity among the states. Several of these groups such as AASHTO and WASHO have developed and published their own recommendations which aim at increased uniformity. AASHTO's current recommendations are published as, "Recommended Policies on Maximum Dimensions and Weights of Motor Vehicles to be Operated Over the Highways of the United States," whereas WASHO has published, "Mobile and Modular Home Transportation Requirements and Procedures."

Other reports and documents which were of particular importance to this project are annotated below.

Jorgensen, Roy and Associates, "Oversize-Overweight Permit Operation on State Highways," NCHRP Report 80 (1969).

This report covers a project conducted to analyze oversize and overweight permit operations of the states. It involved an examination of over 61,000 permits issued by the 48 contiguous states and the District of Columbia. The permits were analyzed as to the characteristics of the commodity, length of haul, type of carriage, etc. The study also included a review and analysis of state regulations on dimensional requirements (legal, routine extra legal, and absolute extra legal). Permit fees, multiple trip permits, enforcement, and other related subjects were also analyzed and reported.

The study found that there was extreme variance in the laws, regulations, and philosophies governing issuance of permits and conditions imposed on the carriers. Recommendations were made for changes in permit practices and for further research.

Weir, David H. and Calvin F. Sihilling, "Measures of the Lateral Placement of Passenger Cars and Other Vehicles in Proximity to Intercity Buses on Two-Lane and Multi-Lane Highways," Contract FH-11-7570, October 1972.

Using photographic techniques, overtaking and oncoming vehicle trajectories were determined on a variety of highway types. Most of the data are of overtaking and passing maneuvers, to ascertain aerodynamic disturbance effects of a 96 -in. and 102-in. wide bus.

The two-lane, oncoming data were taken on a road with 13-ft lanes, excellent shoulders, no significant grade, crown, or curves, and almost unlimited sight distance. The buses traveled in the center of their lane at a speed of $50-55 \mathrm{mph}$. The speeds of oncoming vehicles (passenger cars and pickup trucks) were unknown but the speed limit was 65. Results showed that the average lateral clearance between vehicles was 7 to $7-1 / 2 \mathrm{ft}$, independent of bus width and minor variations in lane placement of the bus. Usable pavement between the oncoming vehicles and the shoulder was 3 ft , except in one data set in which the bus was about $1 / 2 \mathrm{ft}$ to the right of the center of his lane; for this set there were 4 ft of remaining usable pavement for the oncomers.

Winfrey, Robley, Economic Analysis for Highways, International Textbook Company (1969).

This is a major reference document for any study concerned with the costs of highway transportation. It is an extremely thorough reference with a chapter devoted to each major element of cost, basic economics, and the various kinds of problems demanding economic analysis.

Of particular importance to the present study are the sections of the text dealing with vehicle running cost. The author categorizes each of the cost elements associated with operating a vehicle on the highway and has numerous tables in an appendix relating these costs to speed, vehicle type, roadway conditions, and geometrics.

Claffey, Paul J., "Running Costs of Motor Vehicles as Affected by Road Design and Traffic," NCHRP Report 111 (1971).

This study involved road testing of passenger cars, pickup trucks, single unit trucks and semis. From the tests the running costs associated with fuel consumption, tire wear, maintenance, and oil consumption were determined. The results are presented in graphical form as a function of speed, and are summarized in a tabular format for the convenience of the user. The data of Claffey complement and supplement those in Winfrey's text.

Curry, David A., and Dudley G. Anderson, "Procedures for Estimating Highway User Costs, Air Pollution, and Noise Effects," NCHRP Report 133 (1972).

The purpose of this study was to prepare a manual of procedures to be used by highway engineers and planners for comparing alternative routes, alignments, levels of service, etc. Drawing on references such as Winfrey and Claffey, the authors developed forms and procedures which can be used with relative ease. The procedures include the effects of geometrics, traffic volumes, traffic control devices, and other factors which influence highway user costs.

The major use of this reference in the current project was in estimating incremental pollutant emissions. Chapter 4 of Curry and Anderson describes the effect of speed and speed changes on carbon monoxide and hydrocarbon emissions. It also presents derived data on air pollution as a function of traffic volume-to-capacity ratio, service level, type of road, etc.

Thomas, Thomas C., and Gordon I. Thompson, "The Value of Time Saved by Trip Purpose," Contract FH-11-6881, Stanford Research Institute Project MSU-7362 (1970).
'ihis is the most recent in a series of studies aimed at determining the value of a motorist's time--more specifically, the incremental value of time savings. The technique used was to interview motorists who had made a choice between a faster toll route and a slower free route. The implication was that the cost of the toll route was related to the amount of time saved by using that route.

The results of the study are presented in tabular form, showing the incremental value of each minute of time saved as a function of the trip purpose and the income level of the motorist. The major importance of their findings is that the value of a minute of time to a motorist depends strongly on how many minutes are saved. If only a few minutes of savings are possible, the motorist does not value each minute very highly, However, as the time savings increase to 10 , 20 , 30 min or more the value per minute increases markedly. This means that, in application, the highway economist must know the total time savings of one route over another; it is not sufficient to examine just parts of a route.

APPENDIX B

STATE LISTINGS OF APPLICABLE REGULATIONS AND ATTENDANT COSTS AS OF 1 JULY 1973

Appendix B groups regulations by state. The appendix is comprised of two sections, one for 12 -wides, and one for 14 -wides. The section on 14wides contains only the 36 states which allow moves of that width.

Formatting of both sections is similar. States are listed vertically along the left-hand margin, and listed horizontally are the regulations which apply in each of six major areas:

1. Accessories (signs, flags, lights);
2. Escorts;
3. Operations (time of operation, speed limits, routing);
4. Towing Vehicle;
5. Coach Equipment (brakes, axles) ; and
6. Dimensions.

Each state may have significant regulations in some or all of these categories, and each entry denotes a specific regulation. Where there are no applicable regulations in an entire category, "NR" signifies no regulations are established in that state.

Some regulations are associated with a cost, either a cost passed directly on to the shipper or an absorbed cost included in the per mile line-haul rate. Throughout Appendices B and C significant costs are listed directly after the regulation causing them. These costs are coded in one of four ways utilizing underlines and parenthesis. An example of each follows:

1. $\$ 10.00$ - direct cost to shipper (add-on) ;
2. $\$ 10.00$ - conditional add-on cost (may or may not arise);
3. ($\$ 10.00$) - cost absorbed by carrier; and
4. ($\$ \underline{10.00}$) - conditional cost absorbed (may or may not arise).

For reading convenience, these costs are totaled by category, add-on (costs passed on to the shipper) or absorbed, in the right columns of each row. If costs arise conditionally, a range depicts the possible low and high cost totals in each category.

In addition to common abbreviations which appear in Appendices B and C, several "nonstandard" abbreviations appear. Widely used throughout are the following:

1. NC - No change required
2. NR - No regulation
3. Spc. Pwr. - Special power required

Other nonstandard abbreviations related to particular sections of Appendices B and C as follows:

1. Accessories

$$
\begin{aligned}
& \text { S - Signs } \\
& \text { F - Flags } \\
& \text { L - Lights }
\end{aligned}
$$

2. Escorts
Div. - Divided highways

Undiv. - Undivided highways
3. Operations

Ops. - Operations
R.H. - Rush hour

SR - Sunrise
SS - Sunset
4. Towing Vehicle
C.W. - Curb weight
G.C.W. - Gross combination weight
G.V.W. - Gross vehicle weight

WB - Wheelbase
5. Coach Equipment

Comb. - Combination
L - Length
6. Dimensions

CL - Maximum combination length
H - Maximum height
LL - Maximum load length
W - Maximum width

The reader should be aware that distance-related costs are not reflected in Appendices B and C. In particular, additional distancerelated costs are associated with escorts and flagmen as well as lowboy trailer usage. Examples of their impact in selected states may be found in Section V.G - Regulatory Effect on Hypothetical Trips.

I-8 378VI
STATE LISTING OF APPLICABLE REGULATIONS FOR 12 WIDES

Total Costs	
$\begin{array}{c}\text { Absorbed } \\ (\xi)\end{array}$	$\begin{array}{c}\text { Add-On } \\ (1.25)\end{array}$
	$-0-$

i

\circ
$\stackrel{0}{n}$
$\stackrel{0}{\circ}$
$\dot{\text { ® }}$
8
\vdots
\vdots
\vdots
$\stackrel{\stackrel{\circ}{\circ}}{\dot{\circ}}$

		Regulations						
State		Acces sories	Escorts	Operations	Towing Vehic		Coach Equipment	Dimensions
Delaware		(1.25)	$\begin{aligned} & \text { Front if comb. }>75 \mathrm{ft} \\ & \text { Front and rear if } \\ & \text { comb. }>85 \mathrm{ft} \text { on } \\ & 2-1 \text { ane } \end{aligned}$	Mon-Fri: Daylight 9-3 in some areas 7 Holidaya Speed 1imit: 45	NR		Brakes on front axle	W 14 ft
Florida	s	(3.75)	If $>75 \mathrm{ft}$ comb.: Front on 2-lane Rear on 4 -lane or div.	Mon-Fri: Daylight 7 Holidaya Speed 1imit: 35 or as posted	1 Ton capacity 15 ft Long		Brakes on 1 axle	LL 70 ft CL 85 ft W 12 ft H 13 ft 6 in .
Georgia		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Rear if comb. > 75 ft	Mon-Sat noon: Daylight 7 Holldaya Speed 1imit: 50	NR		NR	$\begin{aligned} & \text { CL } 83 \mathrm{ft} \\ & \mathrm{~W} 12 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in} . \end{aligned}$
Idaho		$\begin{aligned} & (3.75) \\ & (1.25) \\ & 15.00 \end{aligned}$	Rear on 2 lane	Mon-Fri: Daylight 6 Holidaya Speed 1imit: 40 in 60 zone	$\begin{aligned} & \text { 7,500 Curb wt. } \\ & \text { 14,000 G.v.W. } \end{aligned}$	(1.25)	2 Axles Brakes on all axles 3 Axlea if load $>60 \mathrm{ft}$ 150.00	CL 85 ft W 14 ft 6 in . H 14 ft
Illinois		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Riding flagman Front if lane width $<11 \mathrm{ft}$	Mon-Sat Noon: Daylight 9-3:30 cities and expressways 6 1-1/2 Day holidays Speed 1imit: 35 or min. +5	$\begin{aligned} & 1 \text { Ton capacity } \\ & \text { If }>58 \mathrm{ft} \mathrm{load:} \\ & \text { Spc. Pwr. } \end{aligned}$	25.00	Brakea on all axlea Max., 18,000 1b/axle	$\begin{aligned} & \text { CL } 70 \mathrm{ft} \\ & \mathrm{~W} 12 \mathrm{ft} \\ & \mathrm{H} 13 \mathrm{ft} 6 \mathrm{in.} . \end{aligned}$
Indiena		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front and rear if coach > 1/2 roadway	Mon-Fri: Daylight 6 2-Day holidays Speed limit: As posted	120 in . WB 12 ft Min. truck If $>68 \mathrm{ft}$ load: Pwr.	length Spc. $\underline{25.00}$	NR	$\begin{aligned} & \text { CL } 80 \mathrm{ft} \\ & \text { W } 14 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in} . \end{aligned}$

$\left\|\begin{array}{l} 5 \\ i \\ \frac{1}{4} \\ \frac{1}{4} \end{array}\right\|$	$\stackrel{\text { ¢ }}{ }$	-	8 $\stackrel{8}{0}$ $\dot{1}$ $\dot{8}$ $\dot{8}$	$\begin{aligned} & \stackrel{8}{\dot{N}} \\ & \dot{\Delta} \end{aligned}$	i	$\stackrel{8}{9}$
	$\begin{aligned} & \text { N } \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { ヘ̃ } \\ & \text { jo } \end{aligned}$	$\begin{aligned} & \hat{\sim} \\ & \infty \end{aligned}$		ف	$\stackrel{\sim}{\sim}$

Total Costs	
$\begin{array}{c}\text { Absorbed } \\ \text { (S) }\end{array}$	$\begin{array}{c}\text { Add-On } \\ (6.25)\end{array}$
(s)	

State	Accessories	TABLE B-1 (Continued) Regulations				
		Escorts	Operations	Towing Vehicle	Coach Equipment	Dimensions
Nebraska	$\begin{aligned} & S(3.75) \\ & F(1.25) \end{aligned}$	Rear on Interstate	Mon-Fri: Daylight 7 Holidays Speed limit: 35 min.	$\begin{align*} & 1-1 / 2 \text { Ton capacity (} 1.25 \text {) } \tag{1.25}\\ & 120 \mathrm{in} . \mathrm{WB} \end{align*}$	$\begin{aligned} & \text { Axles } \\ & \text { Brakes on } 2 \text { axles } \\ & \qquad \begin{array}{r} 30.00 \\ 3 \text { Axles if load }>60 \mathrm{ft} \\ \qquad 120.00 \end{array} \end{aligned}$	$\begin{aligned} & \text { LL } 65 \mathrm{ft} \\ & \text { CL } 85 \mathrm{ft} \\ & \text { W } 14 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in.} . \end{aligned}$
Nevada	$\begin{array}{ll} \text { S (3.75) } \\ \text { F }(1.25) \\ \text { L } 15.00 \end{array}$	NR	Mon-Fri: Daylight 8 Holidays Speed limit: 55	$\begin{aligned} & 3 / 4 \text { Ton capacity } \\ & 1-1 / 2 \text { Ton if coach } \\ & >18,000 \text { lb } \\ & \text { Cabtop } 1 \text { ight } \end{aligned}$	Adequate brakes	CL 85 ft W 14 ft
- New Hampshire	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Front on 2-lane Rear on 4-lane or div.	Mon-Fri: Daylight 10 Holidays Speed Iimit: As posted	2 Ton capacity (3.25)	Adequate brakes	W 14 ft
New Jersey	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	NR	Mon-Fri: Daylight 7 Holidays Speed limit: As posted	1-1/2 Ton capacity (1.25)	Adequate brakes	W 12 ft
New Mexico	$\begin{aligned} & \text { s (3.75) } \\ & \text { F (1.25) } \end{aligned}$	```Front if comb. > 90 ft Front if coach > 70 ft Front if lane width < 10 ft```	Mon-Fri: Daylight 6 1-1/2 Day holidays Speed limit: As posted	$\begin{aligned} & \text { 1-1/2 Ton capacity (1.25) } \\ & 99 \mathrm{in} \text {. WB } \\ & 15 \mathrm{ft} \text { Max. length if coach } \\ & >65 \mathrm{ft} \end{aligned}$	NR	LL 80 ft CL 95 ft W 14 ft H 13 ft 6 in .
New York	$\begin{array}{ll} \text { S (3.75) } \\ \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	Front on 2-lane	Mon-Fri: Daylight 6 3-Day holidays Speed limit: As posted	$3 / 4$ Ton capacity	NR	$\begin{aligned} & \text { W } 14 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in} . \end{aligned}$

State	TABLE b-1 (Cont inued)								
	Regulations							Total Costs	
	Accessories	Escorts	Operations	Towing Vehicle		Coach Equipment	Dimenstons	Absorbed \qquad	$\begin{aligned} & \text { Add-on } \\ & \left(S_{1}\right. \\ & \hline \end{aligned}$
North Carolina	$\begin{aligned} & \text { s (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Front on 2-lane	Mon-Fri: Daylight 8 Holidays Speed limit: 45 on 4 lane	1-1/2 Ton capacity If $>68 \mathrm{ft}$ coach:	$\begin{aligned} & \text { (1.25) } \\ & \text { Spc. Pwr. } \\ & \underline{25.00} \end{aligned}$	Adequate brakes	$\begin{aligned} & \mathrm{CL} 80 \mathrm{ft} \\ & \mathrm{~W} 12 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in} . \end{aligned}$	(6.25)	0-25.00
North Dakota	$\begin{aligned} & \text { S (3.75) } \\ & \text { F }(1.25) \end{aligned}$	$\begin{aligned} & \text { Front if coach } \\ & \gg 0 \mathrm{ft} \end{aligned}$	Mon-Fri: Daylight 6 1-1/2 Day holidaya Speed limit: 50	2 Ton capacity	(3.25)	NR	W 14 ft H 13 ft 6 in .	(8.25)	-0-
Ohio	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Rear on 4-lane or div. Front if comb. > BO ft Front on routes designated on state map	Mon-Fri: Daylight R.H. curfew in cities 6 1-1/2 Day holidays Travel only on routes $\geq 24 \mathrm{ft}$ Speed 1imit: 40 or posted min.	2 Ton capacity 4,600 Curb wt. 120 in . WB	(3.25)	2 Axlea, brakes on 1 3 Axlea, brakes on 2 if load $>65 \mathrm{ft}$ \qquad	LL 70 ft CL BS ft W 14 ft H 13 ft 6 in .	(8.25)	0-150.00
Oklahoma	$\begin{aligned} & \text { s (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Front on 2-1ane	Mon-Sat Noon: Daylight R.H. curfew in citiea 7 1-1/2 Day holidays Speed 1imit: 50 Limited turnpike travel	2 Ton capacity 118 in . WB 14 ft Min. length	(3.25)	2 Axles Brakes on all axles $3 \text { Axles if coach }>65 \mathrm{ft}$ 150.00	W 14 ft	(B. 25)	30.00-180.00
Oregon	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \\ & \text { L } 15.00 \end{aligned}$	Front on 2-lane	Mon-Fri: Daylight R.H. curfew in cities 6 Holidays Speed 1imit: 60 Routing per state map	$\begin{aligned} & \text { 1-1/2 Ton capacity } \\ & 7,000 \text { Curb wt. } \\ & 120 \mathrm{in} . \text { WB } \end{aligned}$	(1.25)	2 Axlea Brakes on 2 axles $3 \text { Axles if load } \begin{gathered} 30.00 \\ >60 \mathrm{ft} \\ \underline{120.00} \end{gathered}$	$\begin{aligned} & \text { CL BS ft } \\ & \text { W } 14 \mathrm{ft} \end{aligned}$	(6.25)	45.00-165.00
Pennsylvania	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	NR	Mon-Fri: Daylight R.H. curfew in cities 6 3-Day holidays Speed limit: 45 Travel only on $\geq 22 \mathrm{ft}$ routes	1-1/2 Ton capacity	(1.25)	Brakes on all axles 30.00	$\begin{aligned} & \text { CL } 85 \mathrm{ft} \\ & \mathrm{~W} 12 \mathrm{ft} \end{aligned}$	(6.25)	30.00

State	Regulations							
		$\begin{aligned} & \text { Acces- } \\ & \text { sories } \end{aligned}$	Escorts	Operations	Towing Vehicle		Coach Equipment	Dimensions
Vermont		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front．on 2－1ane Rear on 4－lane or div．	Mon－Fri：Daylight 8 Holidays Speed limit：35， 50 on Interstate	2 Ion capacity Cabtop light	（3．25）	NR	W 14 ft
Virginia		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front and rear on． 2－lane	Mon－Fri Noon：Daylight （Sat til noon） 7 1－1／2 Day holidays Speed limit： 45 on 4 lane	1－1／2 Ion capacity 10 ft min．length If $>68 \mathrm{ft}$ coach：	(1.25) Spc．Pwr． 25.00	NR	LL 70 ft CL 80 ft W 12 ft
Washington		$\begin{aligned} & (3.75) \\ & (1.25) \\ & 15.00 \end{aligned}$	Front and rear on 2－1ane	Mon－Fri 2 p．m．：Daylight R．H．curfew in cities 6 1－1／2 Day holidays Speed limit： 40 in 60 zone Routing per state map	$\begin{aligned} & 8,000 \text { Curb wt. } \\ & 35,000 \text { G.C.W. } \\ & 120 \text { in. WB } \end{aligned}$	（1．25）	Brakes on 2 axles $\begin{array}{r} 3 \text { Axles if load }>600 \mathrm{ft} \\ \underline{120.00} \end{array}$	CL 85 ft W 14 ft
West Virginia		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front on 2－lane Rear on 4－lane None on Interstate	```Mon-Fri: Daylight 8 Holidays Speed limit: 40, 45 on Interstate```	```1 Ton capacity 120 in. WB Cabtop light If coach > 63 ft: Spc. Pwr.```	$\underline{25.00}$	NR	CL 75 ft W 14 ft H 12 ft 6 in．
Wisconsin		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	NR	Mon－Fri：Daylight R．H．curfew in cities 6 1－1／2 Day holidays Speed limit： 45 on 4 lane	$\begin{aligned} & \text { 1-1/2 Ton } \\ & \text { 11,000 G.v.W. } \\ & \text { Cabtop 1ight } \end{aligned}$	（1．25）	Brakes on 2 axles $\begin{array}{r} 30.00 \\ 3 \text { Axles if coach }>65 \mathrm{ft} \\ 120.00 \end{array}$	LL 70 ft CL 85 ft W 16 ft H 14 ft
Wyoming	NR		```If comb.> 90 ft: Front and rear on 2]ane Rear only on 4-lane or div.```	```Daily: Daylight 10 Holidays Speed limit. As posted```	NR		NR	NR

Total Costs	
$\begin{array}{c}\text { Absorbed } \\ (S)\end{array}$	$\begin{array}{c}\text { Add－On } \\ (8.25)\end{array}$
(S)	

$0-25.00$
$00.597-00^{\circ} 57$

$\stackrel{5}{2}$
$\stackrel{6}{\bullet}$

CL 85 ft
W 14 ft
CL 75 ft
W 14 ft
H 12 ft 6 in.

先
権
\＆

0－25．00
8
$\stackrel{0}{0}$
\vdots
\vdots
\dot{e}
\dot{e}
（5．00）

$\stackrel{1}{i}$
山出出
出
$\infty \rightarrow \pm$

先
年
TABLE 3－1（Concluded）

State	Accessories	S						cos	
		Escorts	Operations	Towing Vehi		Coach Equipment	Dimensions	$\begin{aligned} & \text { Absorbed } \\ & (s) \end{aligned}$	$\begin{aligned} & \text { Addon } \\ & \text { (s) } \end{aligned}$
Alabama	*R	Front and rear on all moves	Daily: Daylight 6 Holidays Speed limit: As posted	NR		NR	$\begin{aligned} & \text { CL } 85 \mathrm{ft} \\ & \mathrm{~W} 14 \mathrm{ft} \end{aligned}$	-0-	-0-
Arizona	$\begin{aligned} & \mathrm{s}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Front and rear on all moves	$\begin{aligned} & \text { Mon-Fri: Daylight } \\ & 7 \text { Holidays } \\ & \text { Speed limit: } 45 \end{aligned}$	$\begin{aligned} & 2 \text { Ton capacity } \\ & 99 \text { in. WB } \end{aligned}$	(3.25)	Adequate brakes Lowboy required 50.00	LL 65 ft W 14 ft	(8.25)	50.00
Arkansas	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.75) \end{aligned}$	$\begin{aligned} & \text { Front and rear on } \\ & \text { 2-lane } \end{aligned}$	Mon-Fri: Daylight 9 Holidays Speed 1imit: 35 Routing per state map	1 Ton capacity Cabtop light		2 Axles Adequate brakes	w 14 ft	(5.00)	-0-
colorado	s (3.75)	Front and rear except on 4 -lane or divided	Mon-Thurs: Daylight 11 Holidays Speed limit: As posted Routing per state map	2 Ton capacity	(3.25)	Brakes on all axles 30.00	$\begin{array}{lll} \text { W } 14 \mathrm{ft} \\ \text { H } 13 \mathrm{ft} & \mathrm{in} . \end{array}$	(7.00)	30.00
Connecticut	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Front and rear on all moves	Tue-Thur: $\quad 9-4(\underline{0}-22.50)$ 11 3-Day holidays Speed limit: As posted	10,000 c.v.w.		Brakes on all axles 30.00	NR	(5.00-27.50)	30.00
Delaware	F (1.25)	Rear on 4-lane or div. Front and rear on 2-lane	$\begin{aligned} & \text { Mon-Thur: } 9-3(0-30.00) \\ & 7 \text { Holidays } \\ & \text { Speed limit: } \end{aligned}$	NR		Brakes on front axle Lowboy required 50.00	Ll 60 ft CL 75 ft w 14 ft H 13 ft 6 in .	(1.25-31.25)	50.00

Costs	
absorbed	Add-On
(5)	(s)
(8.25)	45.00-19

$\dot{\square}$
ozt
(8.25)
(4.50-34.50)
$\stackrel{\pi}{n}$
$\stackrel{\oplus}{\bullet}$

State		Regulations						
		$\begin{aligned} & \text { Acces- } \\ & \text { sories } \end{aligned}$	Escorts	Operations	Towing Vehicle		Coach Equipment	Dimensions
Idaho	F	$\begin{aligned} & (3.75) \\ & (1.25) \\ & 15.00 \end{aligned}$	Front and rear on 2 or 4-lane Rear only on Interstate	Mon-Fri: Daylight 6 Holidays Speed 11mit: 40 in 60 zone	$\begin{aligned} & 9,000 \text {..urb wt. } \\ & 19,000 \text { G.V.W. } \\ & 100 \mathrm{in} .{ }^{2} \mathrm{~B} \end{aligned}$	(3. 25)	$\begin{aligned} & 2 \text { Axles } \\ & \text { Brakes on all axles } \\ & \begin{aligned} 3 \text { Axles if load } & >60 \mathrm{ft} \\ & \underline{150.00} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { CL } 85 \mathrm{ft} \\ & \mathrm{~W} 14 \mathrm{ft} 6 \mathrm{in} . \\ & \text { H } 14 \mathrm{ft} \end{aligned}$
Indiana		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front and rear on all moves	Mon-Fri: SR-3:30 62 Day holidays $(0-3.75)$ Speed limit: 45 Travel only on 224 routes No Interstate travel	```2 Ton capacity 120 in. WB If coach > 68 ft: Pwr.```	$\begin{aligned} & (3.25) \\ & \text { spc. } \\ & 25.00 \\ & \hline \end{aligned}$	3 Axles 120.00 Brakes on all axles 60.00	$\begin{aligned} & \mathrm{CL} 80 \mathrm{ft} \\ & \mathrm{~W} 14 \mathrm{ft} \\ & \mathrm{H} 13 \mathrm{ft} 6 \mathrm{in} . \end{aligned}$
Iowa		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front on all moves	Mon-Fri: Daylight 7 3-Day holidays Speed limit: 35 or posted So Mile maximum trip No Interstate travel	1-1/2 Ton capacity 6,000 Curb wt. 120 in . WB	(1.25)	NR	LL 68 ft CL 80 ft W 14 ft H 13 ft 10 i
Kansas		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front and rear on all moves	Mon-Fri: Daylight R.H. curfew in cities 10 Holidays Speed limit: 50	$\begin{aligned} & 2 \text { Ton capacity } \\ & 99 \text { in. WB } \end{aligned}$	(3.25)	3 Axles $\quad 120.00$	CL 85 ft W 14 ft
Kentucky		$\begin{aligned} & (1.25) \\ & 15.00 \end{aligned}$	```Front on 4-lane or div. Front and rear on 2-lane```	Mon-Fri: $9-3$ (0-30.00) 6 1-1/2 Day holidays Speed limit: 35, 45 on Interstate Limited travel on 2-lane	2 Ton capacity If coach $>68 \mathrm{ft}$: Pwr.	$\begin{aligned} & \text { (3.25) } \\ & \text { Spc. } \\ & 25.00 \\ & \hline \end{aligned}$	Brakes on all axles 30.00	LL 70 ft CL 80 ft W 14 ft
Louis iana		$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front on all moves	Mon-Fri: Daylight 13 Holidays Speed limit: 45	1-1/2 Ton capacity	(1.25)	Brakes on all axles 30.00	$\begin{aligned} & \text { CL } 85 \mathrm{ft} \\ & \text { W } 14 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in.} \end{aligned}$

State	Regulations								Costs	
		Accessories	Escorts	Operations	Towing Vehicl		Coach Equipment	Dimensions	Absorbed $(\$)$	$\begin{gathered} \text { Add-0n } \\ (\$) \\ \hline \end{gathered}$
Ohio	S F L	$\begin{aligned} & (3.75) \\ & (1.25) \\ & 15.00 \end{aligned}$	Rear on all moves	$\begin{aligned} & \text { Mon-Fri: } 9-3(0-30.00) \\ & 6 \mathrm{l-1/2} \text { Day holidays } \\ & \text { Speed limit: } 35 \\ & \text { Travel only on } 224 \mathrm{ft} \\ & \quad \text { routes } \\ & \text { No turnpike travel } \end{aligned}$	2 Ton capacity 4,600 Curb wt. 120 in. W.B. Cabtop light	(3.25)	$\begin{aligned} & 4 \text { Axles } 240.00 \\ & \text { Adequate brakes } \end{aligned}$	$\begin{aligned} & \text { LL } 70 \mathrm{ft} \\ & \text { CL } 85 \mathrm{ft} \\ & \text { W } 14 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in} . \end{aligned}$	(8.25-38.25)	255.00
Oklahoma	S	$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	Front and rear on 2-1ane Rear on 4-lane or div.	Mon-Fri: 9-ss (0-7.50) R.H. curfew in cities Sat. til noon 7 1-1/2 Day holidays No turnpike travel Speed limit: 50 or as posted	2 Ton capacity 118 in . WB 14 ft Min. length	(3.25)	2 Axles Brakes on all axles $3 \text { Axles if load } \begin{aligned} & 30.00 \\ & >65 \mathrm{ft} \\ & 150.00 \end{aligned}$	W 14 ft	(8.25-15.75)	30.00-180.00
Oregon	S F L	$\begin{aligned} & (3.75) \\ & (1.25) \\ & 15.00 \end{aligned}$	Front and rear on 2-lane Rear on 4-lane or div.	Mon-Fri: Daylight R.H. curfew in cities 6 Holidays Speed limit: 60 Routing per state map	9,000 Curb wt. 35,000 G.C.W. 120 in . WB	(3.25)	$\begin{array}{lr} 3 \text { Axles } & 120.00 \\ \text { Brakes on } \geq 2 \text { axles } \\ & 30.00 \end{array}$	CL 85 ft W 14 ft	(8.25)	165.00
Rhode Island	s	(3.75)	Front on all moves	Mon-Fri: Daylight R.H. curfew in cities 10 Holidays Speed limit: As posted	$\begin{aligned} & \text { If coach }>67 \mathrm{ft} \text { : } \\ & \text { Pwr. } \end{aligned}$	$\begin{aligned} & \text { Spc. } \\ & 25.00 \\ & \hline \end{aligned}$	NR	$\begin{aligned} & \text { CL } 79 \mathrm{ft} \\ & \text { W } 14 \mathrm{ft} \\ & \text { H } 13 \mathrm{ft} 6 \mathrm{in.} \end{aligned}$	(3.75)	0-25.00
South Dakota	S	$\begin{aligned} & (3.75) \\ & (1.25) \end{aligned}$	$\begin{aligned} & \text { Front if lane width } \\ & <12 \mathrm{ft} \end{aligned}$	```Mon-Sat noon: Daylight Sat, til noon 9 Holidays Speed limit: 40 in 60 zone```	2 Ton capacity Cabtop light	(3.25)	NR	W 14 ft	(8.25)	-0-
Texas	NR		NR	Mon-Fri: Daylight R.H. curfew in cities No Interstate travel Speed limit: 45 or as posted	$3 / 4$ Ton capacity		NR	NR	-0-	-0-

$\begin{array}{cc}\begin{array}{cc}\text { Absorbed } \\ (\$)\end{array} & \begin{array}{c}\text { Costs } \\ (6.25-10.25)\end{array} \\ 45.00-165.00\end{array}$
i
8
$\stackrel{\oplus}{\bullet}$
8
$\stackrel{+}{4}$
\vdots
\vdots
$\stackrel{9}{9}$
$\stackrel{8}{\alpha}$
$\stackrel{\rightharpoonup}{-}$
(8.25)
$\stackrel{\stackrel{N}{n}}{\substack{0 \\ 0}}$
i
(8.25)
i

State	Accessories	Regulations					
		Escorts	Operations	Towing Vehicle		Coach Equipment	Dimensions
Utah	$\begin{array}{ll} S(3.75) \\ \text { F (1.25) } \\ \text { L } 15.00 \end{array}$	Front on 2-lane Rear on 4-1ane or div.	Mon-Fri: Daylight R.H. curfew in cities 7 1-1/2 Day holidays Speed 1imit: 60	1-1/2 Ton capacity 9,000 Curb wt. 19,000 G.V.W. 100 in. WB 2-1/2 Ton capacity modulars	$\begin{aligned} & (1.25) \\ & \text { for } \\ & (4.00) \end{aligned}$	2 Axles Brakes on ≥ 2 axles 30.00	CL B 5 ft W 14 ft
Vermont	$\begin{aligned} & \text { s (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Front on 2-lane Rear on 4-lane or div. Police escort		2 Ton capacity Cabtop light	(3.25)	NR	w 14 ft
Waahington	$\begin{array}{ll} \text { S (3.75) } \\ \text { F } \\ \text { L } & 15.25) \end{array}$	$\begin{aligned} & \text { Front and rear on } \\ & 2 \text { 2-lane } \\ & \text { Rear on } 4 \text {-lane or } \\ & \text { div. } \end{aligned}$	Mon-Fri 2 p.m.: Daylight R.H. curfew in cities 6 1-1/2 Day holidays Speed limit: 40 in 60 zone Routing per atate map	9,000 curb wt. 35,000 G.c.w. 120 in . wb	(3.25)	3 Axles Brakea on 120.00 2 axlea 30.00	CL 85 ft W 14 ft
Weat Virginia	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Front and rear on all moves	Mon-Fri: Daylight B Holidaya Speed limit: 40,50 on Interstate Travel only on $\geq 24 \mathrm{ft}$ routea	```2 Ton capacity 120 in. WB Cabtop light If coach > 63 ft: Pwr.```	$\begin{aligned} & (3.25) \\ & \text { Spc. } \\ & \underline{25.00} \\ & \hline \end{aligned}$	3 Axlea 120.00 Adequate brakea	$\begin{aligned} & \text { CL } 75 \mathrm{ft} \\ & \text { W } 14 \mathrm{ft} \\ & \text { H } 12 \mathrm{ft} 6 \mathrm{in} . \end{aligned}$
Wisconsin	$\begin{array}{ll} \text { S (3.75) } \\ \text { F (1.25) } \\ \text { L } & 15.00 \end{array}$	Front when designated on state map	Mon-Fri: Daylight R.H. curfew in citiea 6 1-1/2 Day holidays Speed limit: 35 on 2 lane	1-1/2 Ton capacity 11,000 G.v.W. Cabtop light	(1.25)		LL 70 ft CL BS ft W 16 ft H 14 ft
Hyoming	NR	Front and rear on 2-1ane Rear on 4-lane or div. None on Interstate	Mon-Sun: Daylight 10 Holidays Speed limit: As posted 45 if escorted	NR		NR	NR

APPENDIX C

REGULATION VARIATIONS BETWEEN STATES AND ATTENDANT COSTS, AS OF 1 JULY 1973

Appendix C indicates differences in regulations between two adjacent states and costs which are associated with complying with differing regulations. The table herein sets forth combinations of states which share a common border which can be legally crossed by 12- and 14-wide mobile and modular homes.

The combinations are listed alphabetically in couplets. The rows of each couplet reflect the two directions of travel possible between the states.

As in Appendix B, related regulations have been grouped in categories to facilitate presentation. The categories in Appendix C are similar to those presented in Appendix B except that dimension and equipment categories are combined in Appendix C.

The entires (other than "NC"--no change) in each table occur only when a difference in established regulations has been determined. If a specific regulation exists which is compatible in two adjacent states, "NC" is present. If, in crossing a border no regulation gives way to a specific regulation, or if a specific regulation is superseded by a more stringent one, an appropriate entry is made. Notations in the categories of accessories and escorts indicate simply that some change is necessary. The criteria used to determine the necessity for changes based on the regulations follow:

* Signs: wording, color, location
* Flags: location, increased number
* Lights: special light rig required, compatibility
* Escorts: additional escort requirements, special type escort

In the remaining three categories, regulations of both states are presented in the tables in the same order as the states in the row are listed. The entries can best be understood if thought of in the following terms: from State A entaring State B, no regulation or a lesser regulation is superseded by a more stringent regulation.

Costs are either absorbed by the carrier or added onto the total costs paid by the shipper. Additionally, some costs are conditional while others are independent. Coding of costs for identification is the same as in Appendix B.

As in Appendix B, the distance-related costs of escorts, flagmen, or lowboy trailer use are not indicated since they vary with specific trip circumstances. Charges associated with these costs are additional to linehaul mileage charges. For example, in going from Alabama to Georgia a \$1.50 absorbed cost is incurred, attributable to the time required in arranging for or locating an escort vehicle. Escort mileage costs are additional and not included in these tables.

Cost totals are recorded in the two right-hand columns. Absorbed and add-on costs are separated to preserve recognition of both types. Where costs are conditional, a range presents the possible low and high cost total for the row.

Nonstandard abbreviations are the same as those employed in Appendix B.
table c-1
table c-1
regilation variations between states ano attendant costs for 12 wides

Costs	
Absorbed (s)	Add-On
(3.75)	-0-
-0-	-0-
(5.00-6.50)	-0-
-0-	-0-
(1.25)	0-25.00

$85 \mathrm{ft} \mathrm{Comb} \mathrm{~L}-.83 \mathrm{ft}$
$\mathrm{NR}-13 \mathrm{ft} 6 \mathrm{in}$. Height
ft Comb. L -80 ft
Spc. Pwr.
$\underline{25.00}$
:
Y

$\begin{array}{c}\text { Border Combination } \\ \text { From. To }\end{array}$

$\frac{\text { From - To }}{\text { Alabama - Tennessee }}$
-
Tennessee - Alabama
Arizona - California
O California-Arizona

Cornia

Arizona - Colorado
Colorado - Arizona

Costs	
Absorbed (s)	$\begin{aligned} & \text { Add-On } \\ & (\$) \\ & \hline \end{aligned}$
(2.50)	30.00
(1.25-2.75)	-0-
(1.25)	-0-
(5.00-6.50)	-0-
(6.25-7.75)	-0-

$\frac{$| Border Combination |
| :---: |
| From - Io |}{Arkansas - Louisiana}

Louisiana - Arkansas
Arkansas - Mississippi

Costs	
Absorbed (5)	$\begin{aligned} & \text { Add-On } \\ & \hline \text { (S) } \end{aligned}$
(8.25-9.75)	0-120.00
(5.00)	-0-
(5.00-6.50)	-0-
(5.00)	-0-
-0-	-0-
(5.00-6.50)	$0-$

| $\begin{array}{c}\text { Border Combination } \\ \text { From - To }\end{array}$ |
| :---: | Arkansas - Oklahora

Oklahoma - Arkansas

Arkansas - Tennessee

Tennessee - Arkansas

Absorbed	Add -0 n
(s)	(s)
(5.00)	15.00

$\stackrel{8}{9}$

$\begin{aligned} & \stackrel{8}{\otimes} \\ & \stackrel{\rightharpoonup}{3} \\ & \dot{0} \end{aligned}$

Border Combination
From - Io

California - Oregon
Oregon-California
Colorado - Kansas
Kansas - Colorado

Costs	
Absorbed (\$)	$\begin{aligned} & \text { Add-On } \\ & \text { (S) } \end{aligned}$
(5.00)	-0-
(1.25-2.75)	-0-
(6.25)	30.00
(1.25-2.75)	-0-
(5.00-6.50)	-0-
(3.75)	-0-

Regulations				
Accessories	Escorts	Operations	Towing Vehicle	Dimensions and \qquad
S (3.75)	nc	sc	NR $=1-1 / 2$ ton capacity (1.25)	nc
F (1. 25)	Add escort of comb. $>75 \mathrm{ft} \quad(1.50)$	SR-SS - Midday on certain routes	NC	NR - Brakes on front axle
S (3.75)	nc	NR - R.H. curfew in cities	NR - 1/1/2 ton capacity	NR - $85 \mathrm{ft} \mathrm{Comb}$.
F (1.25)		Holiday only - 3 days	(1.25)	$\begin{array}{r} \text { Min. - Brakes on all axles } \\ 30.00 \end{array}$
F (1.25)	Add escort if comb. $>75 \mathrm{ft} \quad(\underline{1.50})$	6 Holidays - 7	nc	nc
s (3.75)	Add escort if comb.	nc	nc	85 ft Comb. L-83 ft
s (3.75)	NC	6 Day ops - 5	NC	NR - 70 ft Coach L

$\frac{$| Border Conbination |
| :---: |
| From - To |}{Delaware - New Jersey}

New Jersey - Delaware

[^0]Pennsylvania - Delaware
Florida - Georgia

$\begin{array}{ll}\begin{array}{c}\text { Costs } \\ \begin{array}{c}\text { Absorbed } \\ (\mathrm{S})\end{array} \\ \\ (6.25-7.75)\end{array} & \begin{array}{c}\text { Add-On } \\ (\mathrm{S})\end{array} \\ \\ (3.75-5.25 .00\end{array}$

(1.25)
(0-1.50)
(1.25)
i
$\stackrel{\grave{n}}{\stackrel{1}{i}} \quad \dot{~}$
i
\vdots

Z

13 ft 10 in . Height -
13 ft 6 in .
85 ft Comb. $\mathrm{L}-83 \mathrm{ft}$

Border Combination \qquad	Regulations				
	Accessories	Escorts	Operations	Towing Vehicle	Dimensions and Equipment
Georgla - North Carolina	$\begin{aligned} & \text { s (3.75) } \\ & \text { F }(1.25) \end{aligned}$	Add escort on 2-lane if comb. $\leq 75 \mathrm{ft}$ (1.50)	$\begin{aligned} & 6 \text { Day ops }-5 \\ & 7 \text { Holidays - } 8 \end{aligned}$	NR - 1-1/2 Ion capacity (1.25)	$\begin{array}{r} 83 \mathrm{ft} \text { Comb. L }-80 \mathrm{ft} \\ \text { Spc. Pwr. } \\ \hline 25.00 \\ \hline \end{array}$
North Carolina - Georgia	S (3.75)	Add escort if comb. $>75 \mathrm{ft}$ and entering from other than 2-lane (1.50)	NC	NC	NC
Georgia - South Carolina	NC	NC	$\begin{aligned} & 6 \text { Day ops - } 5 \\ & 7 \text { Holidays - } 9 \end{aligned}$	NR - 1-1/2 Ton capacity (1.25)	NR - 70 ft Coach L 83 ft Comb. L - 80 ft Spc. Pwr. $\quad 25.00$
South Carolina - Georgia	NC	Add escort if comb. $>75 \mathrm{ft} \quad(1.50)$	NC	NC	NR - 13 ft 6 in . Height
Georgia - Tennessee	F (1.25)	NC	$\begin{aligned} & 6 \text { Day ops - } 5 \\ & 7 \text { Holidays - } 9 \end{aligned}$	NC	NC
Tennessee-Georgia	NC	NC	NC	NC	13 ft 10 in . Height - 13 ft 6 in .

Georgia - South Carolina NC NC	N Day ops -5	
7		
7 Holidays -9		

Costs	
Absorbed (s)	Add-On (s)
(5.75-7.25)	-0-
(5.00)	15.00
(3.75)	15.00
(6.25-7.75)	15.00
(5.00)	30.00-150.00
(5.00-6.50)	-0-

Table C-1 (Continued)Regulations				
Acces sories	Escorts	Operations	Towing Vehicle	Dimensions and Equipment
S (3.75)	Add escort on Interstate (1.50)	NC	$\begin{array}{r} 1-1 / 2 \text { Ton capscity }-2 \text { tons } \\ (2.00) \end{array}$	NR - 70 ft Coach L
$\begin{array}{ll} \text { S (3.75) } \\ \text { F (1.25) } \\ \text { L } 15.00 \end{array}$	nc	nc	NC	NR - 14 ft Height NR - 85 ft Comb. L
$\begin{array}{ll} \text { s (3.75) } \\ \text { L } 15.00 \end{array}$	NC	6 Holiday - 8	NC	NC
$\begin{array}{ll} \mathrm{S}(3.75) \\ \text { L }(1.25) \\ \text { L } 15.00 \end{array}$	Add escort except Interstate \qquad	NC	$\text { Min. capacity }-\frac{1-1 / 2 \text { tons }}{(1.25)}$	NR - 14 ft Height
$\begin{aligned} & \mathrm{s}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	nc	NC	NC	$\begin{aligned} & \text { NR }-3 \text { Axles if losd } \\ & >60 \mathrm{ft} \\ & \begin{array}{c} \text { MIn. }- \text { Brakes on } \begin{array}{c} \text { on } 28 \times 100 \\ 30.00 \end{array} \end{array} . \end{aligned}$
$\begin{aligned} & S(3.75) \\ & F(1.25) \end{aligned}$	Add escort on 4-lane (1.50)	5-1/2 Day ops in winter - 5	NC	NR - 14 ft Height

Border Combination
From - To

Idaho - Montana
Montana-Idaho

\[

\]

Idaho - Oregon

Costs	
Absorbed ((\mathbf{s})	$\begin{aligned} & \text { Add-On } \\ & \hline(\mathrm{s}) \\ & \hline \end{aligned}$
(1.25)	15.00
(1.25-2.75)	15.00
(5.00-6.50)	45.00-165.00
(5.00-6.50)	15.00
(1.25)	-0-
(6.25-7.75)	15.00

Regulations				
Acces sories	Escorts	Operations	Towing Vehicle	$\xlongequal{\substack{\text { Dimensions and } \\ \text { Equipment }}}$
F (1.25)	NC	6 Holidays - 7	nc	NC
L 15.00		Holiday only - 1-1/2 days		
F (1.25)	Add escort except	NC	NC	NR - 14 ft Height
$(\underline{1.50})$				
s (3.75)	Add escort on	Daily ops - 4-3/4	NR - 120 in . Min. WB	NR - 3 Axles if coach
F (1.25)	2-lane (1.50)	Holiday only - 1-1/2 days		$>60 \mathrm{ft} \quad 120.00$
L 15.00				
s (3.75)	Add escort on	NC	NC	NR - 14 ft Height
F (1.25)	4-lane (1.50)			
L 15.00				
F (1.25)	NC	6 Holidays - 10	NC	NC
s (3.75)	Add escort except	7 Day ops - 5	NR - 1-1/2 Ton capacity	NR - 14 ft Height
F (1.25)	Interstate		(1.25)	NR - 85 ft Comb. L
L 15.00	(1.50)			

$\begin{array}{l}\text { Border Contination } \\ \text { From - To }\end{array}$

Idaho - Utah
Utah - Idaho
Idaho - Washington
Washington - Idaho
Idaho - Wyoming
Wyoming - Idaho

Absorbed (\$)	$\begin{gathered} \text { Add-On } \\ \quad(s) \end{gathered}$
(5.00)	0-25.00
(6.50)	30.00-55.00

8
ล่
\vdots
(2.75) $\quad 30.00-55.00$
$\stackrel{i}{i}$
\circ
$\stackrel{\circ}{u}$
\dot{u}
$\dot{\circ}$
$\dot{\circ}$
(2.50)
(2.75)

TABLE C-1 (Continued)

Border Combination \qquad	Regulations				
	Accessories	Escorts	Operations	Towing Vehicle	Dimensiona and Equipment
Illinois - Indiana	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	NC	1-1/2 Day Holiday - 2 days	$\begin{aligned} & \mathrm{NR}-120 \text { in. Min. WB } \\ & \text { Spc. Pwr. } \end{aligned}$ 25.00	NR - 13 ft 6 in . Height
Indiana - Illinois	$\begin{aligned} & \text { S (3.75) } \\ & \text { F }(1.25) \end{aligned}$	Add flagman (1.50)	NR - R.H. curfew in cities	NC	80 ft Comb. $\mathrm{L}-70 \mathrm{ft}$ Spc. Pwr. $\quad 25.00$
Illinois - Iowa	F (1.25)	nc	$\begin{aligned} & \text { 5-1/2 Day ops - } 5 \\ & 6 \text { Holidays }-7 \\ & \text { 1-1/2 Day holiday - } 3 \text { days } \end{aligned}$	Min. capacity - $1-1 / 2$ tons NR - 120 in. Min. WB Spc. Pwr. (1.25) 25.00	nc
Iowa - Illinots	F (1.25)	Add flagman (1.50)	NR - R.H. curfew in cities	NC	80 ft Comb. L - 70 ft Spc PWr. $\frac{25.00}{\text { Prakes on all axles }}$ 30.00 13 ft 10 in . Height - 13 ft 6 in .
Illinoia - Kentucky	F (1.25)	$\begin{aligned} & \text { Add escort on } \\ & 2-1 \text { sne } \quad(\underline{1.50)} \end{aligned}$	NC	$\begin{aligned} & \text { Min. capacity }-\frac{1-1 / 2 \text { tons }}{(1.25)} \\ & \mathbb{N R}-99 \mathrm{in} . \mathrm{Min} . \mathrm{WB} \end{aligned}$	NC
Kentucky - Illinois	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Add flagman (1.50)	NR - R.H. curfew in cities	NC	$\begin{aligned} & 80 \mathrm{ft} \text { Comb. } \mathrm{L}-70 \mathrm{ft} \mathrm{Spc} \\ & \text { Pwr. } \frac{25.00}{\text { NR - Brakes on all axles }} \begin{array}{l} 30.00 \end{array} \end{aligned}$

0

costs	
$\begin{aligned} & \text { Absorbed } \\ & \text { (s) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Add-On } \\ & \text { (5) } \end{aligned}$
(1.25-2.75)	-0-
(2.75)	30.00-55.00
(1.25)	0-120.00
(6.50)	0-55.00
(2.50-4.00)	-0-
(3.75)	-0-

Border Combination \qquad				Continued)	
	Acces sories	Escorts	Operations	Towing Vehicle	Dimensions and Equipment
Illinois - Missouri	NC	Add escort except Interstate (1.50)	$\begin{aligned} & 5-1 / 2 \text { Day ops - } \\ & 6 \text { Holidays }-9 \end{aligned}$	Min. capacity - 1-1/2 tons	NR - 14 ft Height
Missouri - Illinois	F (1.25)	Add flagman (1.50)	NC	NC	
Illinois - Wisconsin	N	NC	5-1/2 Day ops - 5	Min. capacity - 1-1/2 tons NR - Cabtop light	NR - 14 ft Height NR - 3 axles if coach $>65 \mathrm{ft} \quad \underline{120.00}$
Wisconsin - Illinois	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add flagman (1.50)	nc	NC	$\begin{aligned} & 85 \mathrm{ft} \text { Comb. L }-70 \mathrm{ft} \\ & \text { Spc. Pwr. } \frac{25.00}{} \\ & \text { Brakes on } 2 \text { axles - } \\ & \text { all axies } 30.00 \end{aligned}$
Indiana - Kentucky	F (1.25)	$\begin{aligned} & \text { Add escort on } \\ & \text { 2-lane (1,50) } \end{aligned}$	NC	NR - 1-1/2 Ton capacity (1.25)	NR - 70 ft Coach L
Kentucky - Indiana	S (3.75)	NC	5-1/2 Day ops - 5 1-1/2 Day holiday	$99 \mathrm{in} . \mathrm{Min} . \mathrm{WB}-120 \mathrm{in}$.	NR - 13 ft 6 in. Height

Costs	
Absorbed (s)	$\overline{\text { Add-On }}$ $\text { (} \$$
(6.25)	15.00
(5.00)	0-25.00
(8.25-9.75)	0-120.00
(5.00)	0-25.00
(7.00)	-0.

		table c- Regulation	Continued)	
Accessories	Escorts	Regulations......		Dimensions and Equipment
S (3.75)	NC	NC	NR - 1-1/2 Ton capacity	$\mathrm{NR}-70 \mathrm{ft} \mathrm{Coach} \mathrm{L}$
F (1.25)			(1.25)	
L 15.00			NR - Cabtop 1ight	
S (3.75)	nc	NC	NR - 120 in. Min. wB	15 ft Height - 13 ft 6 in .
F (1.25)				$\begin{gathered} 85 \mathrm{ft} \text { Comb. } \mathrm{L}-80 \mathrm{ft} \\ \mathrm{Spc} . \text { Pwr. } \underline{25.00} \end{gathered}$
S (3.75)	Add escort except	NC	NR - 2 Ton capacity (3.25)	NR - 70 ft Coach L
F (1.25)	on 2-lane (1.50)			$\begin{array}{cc} \text { NR }-3 \text { Axles } & \text { if } 1 \text { oad } \\ >65 \mathrm{ft} & \underline{120.00} \end{array}$
$\begin{aligned} & \text { S (3.75) } \\ & \text { F }(1.25) \end{aligned}$	NC	1-1/2 Day holiday - 2 days	nc	NR - 80 ft Comb. L Spc. Pwr. $\quad 25.00$
s (3.75)	NC	NR - R.H. curfew in cities	1-1/2 Ton capacity - 2 tons	13 ft 10 in . Height
F (1.25)			(2.00)	13 ft 6 in .
S (3.75)	Add escort if comb.	6 Holiday - 7	100 in . Min. WB - 120 in .	$70 \mathrm{ft} \mathrm{Coach} \mathrm{L} \mathrm{-} 68 \mathrm{ft}$
F (1.25)	$>70 \mathrm{ft}$ (1.50)	2 Day holiday - 3 days		$85 \mathrm{ft} \mathrm{Comb} .\mathrm{~L} \mathrm{-} 80 \mathrm{ft}$

$\frac{\begin{array}{c}\text { Border Combination } \\ \text { From - To }\end{array}}{\text { Indiana - Michigan }}$
Michigan - Indiana

Indiana - Ohio

Ohio - Indiana

Iowa - Minnesota
Minnesota -. Iowa

Border Combination
$\frac{\text { From - To }}{\text { - Missouri }}$
Missouri - Iowa
g
$\frac{y}{n}$
0
0
0
a
1
0
0
0
0
Nebraska - Iowa
Iowa - South Dakota
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0

Border Combination \qquad	TABLE C-1 (Continued) Regulations					Costs	
	Acces sories	Escorts	operations	Towing Vehicle	Dimensions and Equipment	Absorbed \qquad	$\begin{aligned} & \text { Add-on } \\ & (S) \\ & \hline \end{aligned}$
Kansas - Oklahoma	S (3.75)	NC	Holiday only - 1-1/2 days	NR - 118 in . Min. WB	NC	(3.75)	-0-
Oklahoma - Kansas	$\begin{aligned} & \text { S (3.75) } \\ & \text { F }(1.25) \end{aligned}$	NC	7 Holidays - 10	NC	Tr - 85 ft Comb. L 3 Axle if coach $>65 \mathrm{ft}$ - 3 Axles if coach $>60 \mathrm{ft} \quad \underline{120.00}$	(5.00)	0-120.00
Kentucky - Missouri	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Add escort on 4-lane (1.50)	$\begin{aligned} & 5-1 / 2 \text { Day ops - } 5 \\ & 6 \text { Holidays }-9 \end{aligned}$	NC	NR - 14 ft Height	(5.00-6.50)	-0-
Missouri - Kentucky	F (1.25)	NC	NC	NR - 99 in. Min. Wb	NR - 80 ft Comb. L Spc. Pwr. $\underline{25.00}$	(1.25)	0-25.00
Kentucky - Ohio	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort except on 2-lane (1.50)	5-1/2 Day ops - 5	1-1/2 Ton capacity - 2 Tons (2.00) $99 \mathrm{in} . \mathrm{Min} . \mathrm{WB}-120 \mathrm{in}$.	NR - 13 ft 6 in . Height NR - 3 Axle if coach $>60 \mathrm{ft} \quad 120.00$	(7.00-8.50)	0-120.00
Ohio - Kentucky	F (1.25)	Add escort on 2-lane (1.50)	NC	NC	$\begin{gathered} 85 \mathrm{ft} \text { Comb. L }-80 \mathrm{ft} \\ \text { Spc. Pwr. } \quad \underline{25.00} \end{gathered}$	(1.25-2.75)	0-25.00

Costs	
$\begin{array}{c}\text { Absorbed } \\ \text { isj }\end{array}$	Add-On

\circ
$\stackrel{\circ}{4}$
\vdots
(1.25-2.75)

NR - 70 ft Coach L
85 ft Comb. $\mathrm{L}-80 \mathrm{ft}$
Spc. Pwr. $\quad \underline{25.00}$

Holiday only - 1-1/2 day;

$\mathrm{NR}-13 \mathrm{ft} 10 \mathrm{in}$. Height (20) *
table c-1 (Continued)
 comb. $>75 \mathrm{ft}$
$(\underline{1.50)}$
 ($\overline{02} \cdot \mathrm{~T}) \quad$ 21 SL 5

F (1.25)

Botder Combination
From - To aessauual - रyวnjuey
kentucky - Tennessee

Tennessee - Kentucky
C-23

Kentucky - Virginia
$\begin{array}{rr}(5.00-6.50) & 0-25.00 \\ 12.50) & -0 .\end{array}$
$(5.00-6.50)$
(1.25)
$(5.00-6.50)$

(2.50)

NR - Cahcop litht
Min. capacity - $1-1 / 2$ tons
90 in. Min. WB $-99 \mathrm{in} .25)$
NC
NR

5-1/2 Day ops -5
6 Holidays -8
Holiday only $-1-1 / 2$ days

5 Day ops $-4-1 / 2$
6 Hol idays -7
6 Hol idays - 7
5-1/2 Day ops
6 Holidays -8

Add escort on 4 -lane
(1.50)

S (3.75)
F (1.25)
ลิ
$\stackrel{\rightharpoonup}{2}$
-

Kentucky - West Virginia

Yest ${ }^{\prime}$ irginia - Kentucky

$!$
8
$\stackrel{\circ}{m}$
$\therefore \quad \stackrel{\text { जे }}{\stackrel{\sim}{\circ}}$
(3.75)
(3.75)
table C-1 (Continued)

table C-1 (Continued)

8
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots
\vdots

14 ft Height -12 ft 6 in.
$\mathrm{NR}-75 \mathrm{ft}$ Comb. L
Spc. Pur. $\quad 25.00$

ㄹ
table C-1 (Continued)
Regulations

Absorbed (s)	Costs $(8.25-9.75)$
	$\frac{\text { Add-On }}{(s)}$
(1.25)	$-0-$

$\stackrel{8}{\square}$
$(3.25-5.25)$
$(1.25-75)$

New Hampshire -
Massachusetts
y
§
\vdots
table $\mathrm{C}-1$ (Continued)

(3.75)
(1.25-2.75)

3
4

z
\vdots

$\begin{array}{cr}-0- & 30.00-150.00 \\ (5.00-6.50) & -0-\end{array}$
15 ft Height -14 ft
NR - 3 Axles if 1 oad $>65 \mathrm{ft}$
Min. - Brakes on $\frac{120.00}{2 \times 3 \times 1}$
30.00
NC
table c-1 (Continued)
Dimensions and
$\because \quad \ddot{Z}$
$\begin{aligned} & \text { NR - R.H. curfew in cities } \\ & \text { 1-1/2 Day Holiday - } 2 \text { days }\end{aligned}$

Acces-
sories
$S(3.75)$
F (1.25)
F (1.25)
$\frac{\begin{array}{c}\text { Burder Combination } \\ \text { From - To }\end{array}}{\text { Vassachusetts - Vermont }}$
Vermont - Massachusetts
!
8
$\stackrel{\rightharpoonup}{2}$
-
\%
S (3.75)
F (1.25)
惟 sconsin - Michigan

Cost 5	
Absorbed	Add-On
(s)	(5)
(5.00)	-0.
(5.00)	0-120.00
(1.25)	30.00
(2.00)	0-120.00
(1.25)	30.00
(7.00)	-0-

table C-1 (Continued)
Min. - Brakes on 2 axles
1-1/2 Ton capacity - 2 tons

Min. - Brakes on 2 axles
30.00

1-1/2 Ton capacity - ${ }_{(2 \text { tons }}^{(2.00)}$
NR - 100 in . Min. Wb Regulation
Resulations
$\mathrm{NR}-3$ axles if Coach L
$>65 \mathrm{ft} \underline{120.00}$
6 Holidays - $9 \quad$ NC
5-1/2 Day ops - 5
Hol iday only -2 days
y
NC Towing Vehicle
:
U
$>65 \mathrm{ft} \underline{120.00}$
30.00
1-1/2 Ton capacity - 2 tons wr - 13 ft 6 in . Heigh

$$
=
$$

30.00

Operations
Holiday only $-1-1 / 2$ days
NR - R.H. curfew in cities

$\underline{\text { Escorts }}$
Acces-
sories
S(3.75)
F(1.25) \quad NC

F (1.25) NC
S(3.75) NC
F (1.25)

$\begin{array}{c}\text { Border Combination } \\ \text { Erom - To }\end{array}$

Minnesota - North Dakota
North Dakota - Minnesota
Minnesota - South Dakota
South Dakota - Minnesota
Minnesota - Wisconsin
Wisconsin - Minnesota

Regulations					Costs	
$\begin{aligned} & \text { Acces - } \\ & \text { Sories } \end{aligned}$	Escorts	Operations	Iowing Vehicle	Dimensions and Equipment	Absurbed \qquad	$\begin{aligned} & \text { edd-on } \\ & \text { (s) } \\ & \hline \end{aligned}$
$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Add eucort if comb. $>75 \mathrm{ft} \quad(1.50)$	$\begin{aligned} & \text { 5-1/2 Day ops - } 5 \\ & 6 \text { Holidays - } 9 \end{aligned}$	sc	NR - 13 ft 6 in . Height	(5.00-6.50)	-0-
NC	NC	Holiday only - 3 days	nc	85 ft Comb. L-80 ft Spc. Pwr. $\quad \underline{25.00}$	-0-	0-25.00
$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort on Interstate (1.50)	NC	NR - 120 in. Min. wb	$\begin{aligned} & 14 \mathrm{ft} \text { Height }-13 \mathrm{ft} 6 \mathrm{in} \\ & 70 \mathrm{ft} \text { Ccach } \mathrm{L}-65 \mathrm{ft} \\ & 2 \text { Axles }-3 \text { if coach }>60 \mathrm{ft} \\ & \underline{120.00} \end{aligned}$	(5.00-6.50)	0-120.00
$\begin{aligned} & \mathrm{s}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort except Interstate (1.50)	$\begin{aligned} & 7 \text { Holidays }-9 \\ & \text { Holiday only }-1-1 / 2 \text { days } \end{aligned}$	nc	мс	(5.00-6.50)	-0-
$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	NC	NC	1-1/2 Ton capacity - 2 tons (2.00) NR - 118 in. Min. $W B$	$\begin{gathered} 2 \text { Axles - } 3 \text { if load }>65 \mathrm{ft} \\ \underline{120.00} \end{gathered}$	(7.00)	0-120.00
$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort on 4-lane (1.50)	$\begin{aligned} & \text { 5-1/2 Day ops - } 5 \\ & \text { ? Holidays - } 9 \end{aligned}$	NC	NR - 1'4 ft Height NR - 70 ft Coach 1 NR - 85 ft Cumb.	(5.00-6.50)	-0-

Mississippi - Tennessee
Tennessee - Mississippi
Missouri - Nebraska
Nebraska - Missouri
:Iissouri - Oklahoma
Oklahoma - Missouri

Border Combination Erom - Io\qquad	Regulations					costs	
	Accessories	Escorts	Operations	Towing Vehicle	\qquad	Absorbed $-(s)$ \qquad	$\begin{gathered} \text { Add-Cn } \\ (s) \end{gathered}$
Missouri - Tennessee	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort on Interstate if comb. $>75 \mathrm{ft} \quad(1.50)$	nc	xc	14 ft Height - 13 ft 10 in .	(5.00-6.50)	-0-
Tennessee - Missouri	$\begin{aligned} & \mathrm{s}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort except Interstate if comb. $\leq 75 \mathrm{ft}$ (1.50)	Hol iday only - 1-1/2 days	NR - 1-1/2 Ton capacity (1.25)	NR - 70 ft Coach L	(6.25-7.75)	-0.
Montana - North Dakota	$\begin{aligned} & \mathrm{s}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	NC	Holiday only - 1-1/2 days	NC	NR - 13 ft 6 in . Height	(5.00)	-0.
North Dakota - Montana	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \\ & \text { L } 15.00 \end{aligned}$	$\begin{aligned} & \text { Add escort if comb. } \\ & \leqslant 75 \mathrm{ft} \quad(\underline{1.50}) \end{aligned}$	NC	MC	NR - 70 ft Coach L	(5.00-6.50)	15.00
Hontana - South dakota	F (1.25)	NC	6 Holidays - 9	nc	$\begin{array}{r} \text { Min. - Brakes on } 2 \text { axles } \\ 30.00 \end{array}$	(1.25)	30.00
South Dakota - Montana	L 15.00	Add escort (1.50)	5-1/2 Day ops - 5	$1-1 / 2$ Ton capacity - 2 tons (2.00)	NR - 70 ft Coach L	(3.50)	15.00

TABLE C-1 (Continued)

Acces- sories	Escorts	
F (1.25)	Operations	

$\begin{array}{c}\text { Border Combination } \\ \text { From }- \text { To }\end{array}$

Costs	
$\begin{array}{cr}\text { Absorbed } \\ (S)\end{array}$	$\begin{array}{c}\text { Add-0n } \\ (1.25)\end{array}$
(9.75)	

$-0-$
8
$\stackrel{8}{2}$
$\stackrel{1}{6}$

$$
\begin{aligned}
& \text { \% }
\end{aligned}
$$

$\overline{000021}$
$\begin{aligned} & \mathrm{NR}-85 \mathrm{ft} \text { Comb. } \\ & \mathrm{NR} \text { - } 3 \text { Axles if }\end{aligned}$
eight

 ?
$\xrightarrow[\substack{\text { Dimensions and } \\ \text { Equipment }}]{ }$
WR - 70 ft Coach L
(3.25)

Towing Vehicle
NC
NR -2 Ton capacity (3.25)
NR - 2 Ton capacity
2
NC
NR - 1-1/2 Ton capacity
(1.25)
NR -120 in. Min.

 (Regulations

7 Holidays - 9
5-1/2 Day ops -5
7 Holidays - 10
7 Day ops - 5
z
号
NC
Add escort on
$\stackrel{0}{0}$

F (1.25)

S (3.75)
F (1.25)

Nebraska - Hyoning
Wyoming - Nebraska
Nebraska - South Dakota
S (3.75)
$\mathrm{F}(1.25)$
s (3.75)
$\xrightarrow{\sim}$

Costs	
Absorbed \qquad	$\begin{aligned} & \text { Add-on } \\ & (S) \end{aligned}$
(8.25-9.75)	45.00-165.00
(5.00)	15.00
(6.25)	-0-
(5.00)	-0-
(3.75)	-0-
(3.75)	-0-

Costs	
Absorbed (s)	$\begin{aligned} & \text { Add }-0 n \\ & \hline \end{aligned}$
(0-1.50)	15.00
(6.25)	-0-
(5.00)	-0-
(5.00)	-0-
(5.75-7.25)	0-120.00
(5.00-6.50)	-0-

Regulations Operations	Towing Vehicle	Dimensions and Equipment
Holiday only - 3 days	vc	NR - 13 ft 6 in : Height
6 Holidays - 7	Min. - 1-1/2 Ton capacity (1.25)	NC
Holiday only - 3 days NR - R.H. curfew in cities	NC	NR - $85 \mathrm{ft} \mathrm{Comb}$.
6 Holidays - 7	NC	NC
6 Holidays - 7 NR - R.H. curfew in cities	$\begin{aligned} & 1-1 / 2 \text { Ton capacity }-2 \text { tons } \\ & (2.00) \\ & 99 \mathrm{in} . \mathrm{Min} . \mathrm{WB}-118 \mathrm{in} . \end{aligned}$	$\begin{aligned} & \text { NR - } 3 \text { Axles if coach } \\ &>65 \mathrm{ft} \quad 120.00 \end{aligned}$
5-1/2 Day ops - 5	nc	NR - 13 ft 6 in . Height NR - 80 ft Coach l NR - $95 \mathrm{ft} \mathrm{Comb}$.

Acces sories	Escorts
L 15.00	$\begin{aligned} & \text { Add escort on } 2- \\ & \text { lane } \quad \underline{(1.50)} \end{aligned}$
S (3.75)	NC
F (1.25)	

 New Jersey - New York
 New York - New Jersey
 NC
NC

$\begin{aligned} & \widehat{n} \\ & \stackrel{\sim}{m} \\ & \infty \end{aligned}$

New Mexico - Oklahoma
Oklahoma - New Mexico
Oklahoma - New Mexico

$\begin{aligned} & \text { Absorbed } \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & \text { Add }-0, \\ & (S, 1 \end{aligned}$
-0-	-0-

\vdots

$i \quad i$.
$(5.00-6.50)$
$(6.25-7.75)$

Acces sories	Regulations			
	Escorts	Operations	Towing Vehicle	Dimensions and Equipment
nc	nc	8 Holiday - 9	nc	NR - 70 ft Coach L
F (1.25)	$\begin{aligned} & \text { Add escort on } \\ & 2-\operatorname{lane} \\ & (\underline{1.50}) \end{aligned}$	nc	nc	NR - 13 ft 6 in. Height
$\begin{aligned} & \text { S }(3.75) \\ & \text { F (1.25) } \end{aligned}$	$\begin{aligned} & \text { Add escort except } \\ & \text { on } 2 \text { Plane if comb. } \end{aligned}$ $>75 \mathrm{ft} \quad(\underline{1.50})$	8 Holidays - 9	nc	nc
$\begin{aligned} & \text { se }(3.75) \\ & \text { F }(1.25) \end{aligned}$	Add escort on 2 lane if comb. $575 \mathrm{ft}(\underline{1.50})$	nc	NR - 1-1/2 Ton capacity (1.25)	$\begin{gathered} 85 \mathrm{ft} \text { Comb. } \mathrm{L}-80 \mathrm{ft} \\ \text { Spc. Pwr. } \quad \underline{25.00} \end{gathered}$
nc	$\begin{aligned} & \text { Add escort on } 2- \\ & \text { lane } \\ & (\underline{1.50}) \end{aligned}$	5 Day ops - 4-1/2 days Holiday only - 1-1/2 days	nc	$\mathrm{NR} \cdot 70 \mathrm{ft} \mathrm{Coach} \mathrm{L}$
$\begin{gathered} S_{i}(3.75) \\ \mathrm{F}(1.25) \end{gathered}$	nc	$\begin{aligned} & 5-1 / 2 \text { Day ops - } 5 \\ & 7 \text { Holidays - } 8 \end{aligned}$	nc	ft 6 in. Height

$\frac{$| Border Combination |
| :---: |
| From - To |}{N. Carolina - S. Carolina}

S. Carolina - N. Carolina
N. Carolina - Tennessee
N. Carolina - Virginia

Border Combination \qquad	Regulations					Cost	
	Acces- sories	Escorts	Operations	Towing Vehicle	Dimensions and Equipnent	$\begin{aligned} & \text { Absorbed } \\ & \text { (5i } \end{aligned}$	$\begin{aligned} & \text { Add-on } \\ & \text { (s) } \end{aligned}$
North Dakota - South Dakota		мс	6 Holidays - 9	nc	$\text { NR - Brakes on } \underset{30.00}{2 \text { axles }}$	(5.00)	30.00
South Dakota - North Dakota	$\begin{gathered} s(3.75) \\ F(1.25) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Add escort if comb. } \\ & \gg 75 \mathrm{ft} \\ & \gg \mathrm{ft} \end{aligned}$	5-1/2 Day ops - 5 Holiday only - 1-1/2 days	$\begin{gathered} 1-1 / 2 \text { Ton capacity }-\underset{(2.00)}{2} \text { tons } \end{gathered}$	NR - 13 ft 6 in . Height	(7.00-8.50)	-0-
Ohio - Pennsylvania	nc	nc	NR - R.H. curfew in cities 1-1/2 Day holiday - 3 days	nc	$\begin{gathered} \text { Min. }- \text { Brakes on al1 axles } \\ 30.00 \quad 30 \end{gathered}$	-0-	30.00-60.00
- Pennsylvania - ohio	$\begin{gathered} \mathrm{S}(3.75) \\ \mathrm{F}(1.25) \end{gathered}$	Add escort except on 2-lane or always if comb. $>80 \mathrm{ft}$ (1.50)	NR - Midday ops on Interstate	$\begin{aligned} & \text { 1-1/2 Ton capacity - } 2 \text { tons } \\ & \text { NR }-120 \text { in. Min. }{ }^{(2.00)} \end{aligned}$	NR -13 ft 6 1n. Height NR -70 ft Coach L $\mathrm{NR}-3$ Axles $>$ $>60 \mathrm{ft}$ $\underline{120.00}$	(7.00-8.50)	0-120.00
Ohio - West Virginia	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	$\begin{aligned} & \text { Add escort on } 2- \\ & \text { lane } \\ & (1.50) \end{aligned}$	6 Holidays - 8	NR - Cabtop light	$\begin{aligned} & 13 \mathrm{ft} 6 \mathrm{in} \text {. Height - } \\ & 12 \mathrm{ft} 6 \mathrm{in} \text {. } \\ & 85 \mathrm{ft} \text { Comb. }-75 \mathrm{ft} \\ & \text { Spc. Pwr. } \quad \underline{25.00} \end{aligned}$	(5.00-6.50)	0-25.00
West Virginia - ohio	$\begin{aligned} & \text { si }(3.75) \\ & F(1.2) \end{aligned}$	$\underset{2-1 \text { ane }}{\substack{\text { Add escort except on on } \\(1.50)}}$	NR - Midday ops on Interstate Holiday only - 1-1/2 days	$\begin{aligned} & 1-1 / 2 \text { Ton capacity }-2 \text { tons } \\ & \text { NR }-120 \text { in. Min. } \mathrm{MB} \end{aligned}$	$\begin{gathered} N R-3 \text { Axles if coach }>60 \mathrm{ft} \\ \underline{120.00} \end{gathered}$	(7.00-8.50)	0-120.00

Absorbed \qquad	$\begin{gathered} \text { Add-On } \\ (\$) \end{gathered}$
-0-	-0-
(8.25-9.75)	0-120.00
(3.75-5.25)	-0-
(3.75)	-0-
(1.25-2.75)	0-25.00
(2.50)	30.00

Border Combination \qquad	Regulations				
	Accessories	Escorts	Operations	Towing Vehicle	Dimensions and Equipment
Oklahoma - Texas	NC	NC	NC	nc	NC
Texas - oklahoma	$\begin{aligned} & \mathrm{s}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort on 2- $\text { lane } \quad(\underline{1.50)}$	7 Day ops - 5-1/2 10 Holidays - 7 NR - 1-1/2 Day holiday	$\begin{aligned} & \text { Min. capacity }-2 \text { tons } \\ & \text { NR }-118 \mathrm{in} . \text { Min. } \mathrm{W} 8.25) \end{aligned}$	$\begin{array}{cc} \mathrm{NR}-3 \text { Axles if coach } \\ >65 \mathrm{ft} & \underline{120.00} \end{array}$
Oregon - Washington	S (3.75)	Add escort on 2- lane (1,50)	$\begin{aligned} & \text { 5-1/2 Day ops }-4-3 / 4 \\ & \text { Holiday only }-1-1 / 2 \text { days } \end{aligned}$	NR - $120 \mathrm{in} . \mathrm{Min}$. WB	NC
Washington - Oregon	S (3.75)	NC	NC	NC	NC
Pennaylvania - Weat Virginia	F (1,25)	Add escort except on Interstate (1.50)	6 Holiday - 8	NR - 90 in. Min. WB NR - Cab top light	NR - $12 \mathrm{ft} 6 \mathrm{in}$. Height 85 ft Comb. L - 75 ft S Pwr. $\underline{25.00}$
West Virginia Pennsylvania	F (1.25)	nc	NR - R.H. curfew in cities Holiday only - 3 days	Min. capacity - 1-1/2 tons (1.25)	$\begin{array}{r} \text { NR - Brakes on all axle } \\ 30.00 \end{array}$

Cost Absorbed $(\$)$ $(1.25-2.75)$	Add-0n $(\$)$
(6.25)	30.00

$\stackrel{8}{+}$
\vdots
\vdots
\vdots
$(2.50-4.00)$
$(5.00-6.50)$
(5.00-6.50)

NR - 13 ft 10 in . Height

NR $-1-1 / 2$ Ton capacity
(1.25)
 Spc. Pwr. 25.0 $\substack{\text { Dimensions and } \\ \text { Equipment }}$
$\underset{z}{0}$
solve z บo saypag - yn
s.

NC
NR - 1-1/2 Ton capacity
(1.25)
NC
NR - 1-1/2 Ton capacity
(1.25)
Towing Vehicle (1.25)
$\stackrel{i}{2}$ ($z \cdot 1$)

5 Day ops $-4-1 / 2$ days
Holiday only $-1-1 / 2$ days
5-1/2 Day ops - 5
7 Holidays - 9

Add escort except on
$2-1$ ane if comb.

S (3.75)
F (1.25)

Brorder Combinat ion
\quad Fro

South Dakota - Wyoming
Wyoming - South Dakota
F (1.25)
Add escort on
lane
$(\underline{1.50})$
F (1.25)

S (3.75)
F (1.25)

Virginia - Tennessee
Utah - Wyoming
Wyoming - Utah

Tennessee - Virginia

Costs	
Absorbed	Add-On
(5.00-6.50)	0-25.00

Accessories	Escorts	Operations	Towing Vehicle	Dimensions and Equipment
$\begin{aligned} & \text { S (3.75) } \\ & \text { F }(1.25) \end{aligned}$	Add escort on ' 1 lane (1.50)	$\begin{aligned} & 5-1 / 2 \text { Day ops }-5 \\ & 7 \text { Holidays }-8 \end{aligned}$	NR - 90 in. Min. WB NR - Cabtop light	NR - 12 ft 6 in . Height 80 ft Comb. L - 75 ft Spc. Pwr. $\quad \underline{25.00}$
F (1.25)	Add escort on 2-lane (1.50)	$\begin{aligned} & 5 \text { Day ops }-4-1 / 2 \\ & \text { Holiday only }-1-1 / 2 \text { days } \end{aligned}$	Min. Capacity - 1-1/2 Ton (1.25)	NR - 70 ft Coach

[^1]West Virginia - Virginia

Costs	
Absorbed	Add-On
-0-	30.00
(1.25-2.75)	50.00
(5.00)	135.00
(5.00)	50.00
(1.25)	-0-

TABLE C-2
REGULATION VARLATIONS BETWEEN STATES AND ATTENDANT COSTS FOR 14 WIDES

$\begin{array}{cc}\begin{array}{c}\text { Costs } \\ \begin{array}{c}\text { Absbed } \\ \text { (})\end{array} \\ -0- \\ (1.25-2.75)\end{array} & \begin{array}{c}\text { Add-On } \\ (S)\end{array} \\ & -0-\end{array}$

$\stackrel{\tilde{n}}{\underset{\sim}{n}}$
$\stackrel{8}{8}$
\circ
$\stackrel{\circ}{6}$
(5.00-6.50)
$\underset{\sim}{n}$
$\stackrel{y}{n}$
i
i
$\begin{array}{ll}\circ & \stackrel{\circ}{\circ} \\ \stackrel{\circ}{7} & \vdots \\ \vdots & \dot{\circ} \\ \dot{0} & \end{array}$ (s)
6
h
\vdots
\vdots
\dot{c}

Acces- Regulations				
sories	$\underline{\text { Escort }}$	Operations	Towing Vehicle	Dimensions and Equipment
NC	nc	$\mathbb{N R}$ - R.H. curfew in cities NR - No Interstate travel	NC	nc
F (1.25)	$\begin{aligned} & \text { Add escort on } 2- \\ & \text { lane (1.50) } \end{aligned}$	0 Holidays - 9	nc	NC
S (3.75)	Add escort except	NR - R.H. curfew in cities	NR - $99 \mathrm{in}. \mathrm{Min}$.	
$\begin{array}{ll} \text { F }(1.25) \\ \text { L } 15.00 \end{array}$	on 2-1ane (1.50)		NR. 9 kn. Min. wb	NR - 3 Axles min. 120.00
s (3.75)	nc	$\begin{aligned} & 5 \text { Day ops }-4 \\ & 10 \text { Hol 1days - } 11 \end{aligned}$	NC	NR - 13 ft 6 in . Height Min - Brakes on all axles 60.00
S (3.75)	Add escort on	NR - No Interstate travel	NR - 120 in . Min. Wb	NR - 65 ft Coach L
F (1.25)	4-1ane (1.50)	Wo Interstate travel	Na 120 nn . Min. wb	NR - $85 \mathrm{ft} \mathrm{Comb}$.
				$\begin{gathered} \text { NR }-3 \text { Axles if coach } \\ >60 \mathrm{ft} \quad \underline{120.00} \end{gathered}$
s (3.75)	$\begin{aligned} & \text { Add escort on } 2- \\ & \text { lane (1.50) } \end{aligned}$	$\begin{aligned} & 5 \text { Day ops }-4 \\ & 7 \text { Holidays - } 11 \end{aligned}$	$\begin{array}{r} 1-1 / 2 \text { Ton capacity }-2 \text { tons } \\ (2.00) \end{array}$	Brakes on 2 axles - all axles

$\frac{\begin{array}{c}\text { Border Combination } \\ \text { Prym }- \text { To }\end{array}}{\text { drkansas - Texas }}$
Colorado - Kansas
opesoIop - sesuex

sesueyxy - sexpl

Colorado - Nebraska Nebraska - Colorado
Nebraska .路

Costs	
Absorbed \qquad	$\begin{aligned} & \text { Add On } \\ & \text { (S) } \\ & \hline \end{aligned}$
(1.25-2.75)	-0-
(2.00)	30.00
(5.00-14.00)	0-120.00

(3.75)	
(1.25-2.75)	$15.00-60.00$
$(5.75-7.25)$	$0-30.00$

$\begin{gathered}\text { Border Combination } \\ \text { From }-T_{0}\end{gathered}$
Colorado - New Mexico
New Mexico - Colorado
Colorado - Oklahoma
Oklahoma - Colorado

Costs	
Absorbed (S)	ddd-On (1.50)
$45.00-165.00$	

\circ
$\stackrel{\circ}{8}$

(2.50)	45.00
(2.75)	$-0-$
$(8.25-17.25)$	$0-120.00$

8
0
$\stackrel{0}{1}$
1
0
(8.25-17.25)

Min - 3 Axles if coach
$>65 \mathrm{ft} \quad \underline{120.00}$
U

Min. capacity - 2 tons
NR - 118 in Min. WB SR-SS - $\quad \begin{aligned} & \text { a.m. }-S S \\ & \left(\frac{(0-7.50)}{}\right. \\ & N R-R . H . ~ c u r f e w ~ i n ~ c i t i e s ~\end{aligned}$
NR - No turnpike travel
suoz $2 /$ (T-t - Kajoedey -ufw

U

U

$$
\begin{aligned}
& \text { NR - R.H. curtew in citi } \\
& \text { NR - No turnpike travel }
\end{aligned}
$$

Add escort except
on 2 -lane (1.50)
2
(3.75)
(1.25)

Border Combination
From - To
Arizona - Utah
Utah - Arizona
Arkansas - Louisiana
Louisiana - Arkansas
C-43

F (1.25)
L or
escort
15.00
F (1.25)

lane
\qquad

Arkansas - Oklahoma

$$
\begin{aligned}
& \text { Escort } \\
& \text { dd escort (1.50) }
\end{aligned}
$$

sesueyzy - enocyiyo
$\begin{aligned} & \text { Acces- } \\ & \text { sories }\end{aligned}$
L 15.00
y
2

0
EI - skeplion 6
TABLE C-2 (Continued)

$$
\begin{aligned}
& \text { Regulations } \\
& \text { Operations } \\
& \text { NR - R.H. curfew in cities }
\end{aligned}
$$

$\left\lvert\, \begin{array}{ll}\substack{0 \\ \frac{1}{4} \\ \frac{3}{4}} \\ 0\end{array}\right.$
\vdots

\circ
-

Absorbed
(s)
(1.25-2.75)
$\hat{\circ}$
$\stackrel{\circ}{i}$
(6.50-29.00)

8
$\stackrel{4}{3}$
$\stackrel{8}{9}$
(6.50-29.00)

\dot{i}
8
$\stackrel{\circ}{子}$
(6.50) 1

Costs	
Absorbed (s) (5.25)	Add-0n (s)
	-0.

-0-
$00 \cdot 5 I$
8
$\stackrel{8}{9}$
\vdots
$\stackrel{8}{8}$
$\stackrel{\rightharpoonup}{3}$

Dimensions and
Equipment.

$\left.105 \cdot 9-5 z^{\circ} 1\right)$
әlxe juoxj uo sayeig - yn
U

y
TABLE C-2 (Cont inued)

suotyerado
7 Holidays - 8

($\overline{\left.(0)^{2} T\right)}$
э^
:

!

30.00

$\hat{0}$	δ
0	0
0	0
0	0

(5.00)

\approx
-路

Costs	
Absorbed (s)	AJd-on (s)
(5.00)	0-120.00
(5.00-6.50)	15.00-45.00
(1.25)	15.00
(3.25-4.75)	15.00-45.00
(5.00)	15.00
(5.00-6.50)	15.10-45..70

	TABLE C-2 (Continued) Regulations			
Accessories	Escorts	Operations	Towing Vehicle	Dimensions and Equipment
$\begin{aligned} & \dot{S}(3.75) \\ & \text { F }(1.25) \end{aligned}$	nc	NR - R.H. curfew in cities	100 in . WB - 120 in .	$\begin{array}{r} \text { 2-3 Axles - } 3 \text { Axles } \\ \underline{120.00} \end{array}$
$\begin{array}{ll} \text { S (3.75) } \\ \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	Add escort on 4-lane (1.50)	NC	NC	NR - 14 ft Height Brakes on 2 axles - All axles $\underline{30.00}$
$\begin{array}{ll} \text { F (1.25) } \\ \text { L } & 15.00 \end{array}$	NC	NR - R.H. curfew in cities 6 Hol idays - 7 Holiday only - 1-1/2 days	NC	NC
$\begin{array}{ll} \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	Add escort except Interstate (1.50)	NC	$\begin{array}{r} 1-1 / 2 \text { Ton capacity }-2 \text { Tons } \\ (2.00) \end{array}$	NR - 14 ft Height Brakes on 2 axles - All axles 30.00
$\begin{array}{ll} \text { S } & (3.75) \\ \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	NC	$\begin{aligned} & 5 \text { Day ops }-4-3 / 4 \\ & \text { Hol iday only }-1-1 / 2 \text { days } \end{aligned}$	$100 \mathrm{in} . \mathrm{WB}$ - 120 in .	NC
$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \\ & \text { L } 15.00 \end{aligned}$	Add escort on 4 - lanc (1.50)	NC	NC	$\begin{aligned} & \text { NR }-14 \mathrm{ft} \text { Height } \\ & \text { Brakes on } 2 \text { axles - All } \\ & \text { axles } \quad 30.00 \text {. } \end{aligned}$

$\frac{\begin{array}{c}\text { Border Combination } \\ \text { From - Io }\end{array}}{\text { Idaho-Oregon }}$
Oregon - Idaho
Idaho - Utah
Utah - Idaho
Idaho - Washington
Washington - Idaho
$\begin{array}{ll}\begin{array}{c}\text { Costs } \\ \begin{array}{c}\text { Absorbed } \\ (S)\end{array} \\ (1.25)\end{array} & \begin{array}{r}\text { Add-On } \\ (S)\end{array} \\ & \\ (8.25-9.75) & 45.00-195.00\end{array}$

¿
8:30 a.m. to $3: 30$ p.m. -
9 a.m. t.o 3 p.m.
$(\underline{0.3 .75})$

$\stackrel{\circ}{\dot{\circ}}$
$\stackrel{\text { ® }}{ }$
$\stackrel{8}{\square}$

(5.00-8.75)
(8.50)

NR - 70 ft Coach L

NR - 120 in. Min. wb

1-1/2 Day hol 1 day -2 days
NR - No Interstate travel
8: 30 a.m. to $3: 30 \mathrm{p} . \mathrm{m}$. -
9 a.m. to $\begin{aligned} & \text { p.m. } \\ & \text { 2 Day holiday } \\ & \frac{(0-3.75)}{-2-1 / 2}\end{aligned}$
NRays

- No Interstate travel

$\underset{z}{2}$
Aod escort except
on $2-1$ ane (1.50)

F (1.25)	
I 15.00	

S (3.75)
F (1.25)
L 15.00
S (3.75)
F (1.25)
$\begin{array}{r}\text { Border Combination } \\ \begin{array}{l}\text { Frost }- \text { To }\end{array} \\ \hline\end{array}$ $\frac{\text { From - To }}{\text { Idaho - Wyoming }}$ Wyoming - Icia io

Indiana - Kentucky

Kentucky - Indiana
Indiana - Michigan
Michigan - Indiana
TABLE C-2 (Continued)

Costs	
Absorbed (s)	Add-on (7.00)
	30.00
(6.50)	$-0-$

$00 \cdot 561$
(1.25)
(6.50)
i

8
$\dot{8}$
$=$
$\dot{8}$
$\dot{3}$
$\stackrel{3}{3}$
(3.75)
$\stackrel{\text { ñ }}{\infty}$
$\dot{\infty}$
$\stackrel{\otimes}{\dot{~}}$
(8.
table c-2 (Continued)

NR - Brakes on 2 axles
on 2 axles
30.00
NR - 13 ft 10 in . Heigh

NR - 3 Axles min.
150.00
Min. - Brakes on all
30.00
Min. - Brakes on all axles
30.00

14 ft Height - 13 ft 10 in .
70 ft Coach $\mathrm{L}-68 \mathrm{ft}$
85 ft Comb. $\mathrm{L}-80 \mathrm{ft}$

y
$1-1 / 2$ Ton capacity $-\underset{(2.00)}{2}$

NR - R.H. curfew in cities
7 Holidays - 10
NR - No Interstate use
u
nc

S (3.75)
L 15.00
S (3.75)
F (1.25)

Border Combination
$\frac{\text { From - To }}{\text { Iowa - South Dakota }}$
South Dakota - Iowa

Iowa - Wisconsin
Wiscons in - Iowa
Add escort (1.50)

S (3.75)
F (1.25)
6 Holidays -7
$1-1 / 2$ Day holiday -3 Day
NR - No Interstate use

NR - Cabtop 1 ight

NR - R.H. curfew in cities
z
$\begin{array}{ll}\text { F (1.25) } \\ \mathrm{L} & 15.00\end{array}$

$\begin{array}{c}\text { Absorbed } \\ (S)\end{array}$	$\begin{array}{c}\text { Costs } \\ (3.75-11.25)\end{array}$

$\begin{aligned} & \begin{array}{l}\text { Dimensions and } \\ \text { Equipment }\end{array} \\ & \text { 2-3 Axles }-3 \text { Axles } \\ & \underline{120.00}\end{aligned}$
NR - 85 ft Comb. L NR-13 ft 6 in. Height
NR-4 Axles min.
240.00
-
(5.00)
00.072

(1.25-2.75)
(5.00-6.50) $\quad 120.00-145.00$
NR - 120 in. Min. WB
NR - Cabtop 11 git
6 Holidays - 8
:

$\mathrm{NR}-12 \mathrm{ft} 6 \mathrm{in}$. Height
80 ft Comb. $\mathrm{L}-75 \mathrm{ft}$
NR ft Comb. L -75 ft
80 Spc. Pwr. 25.00
$\mathrm{NR}-3$ Axles min.
NR - 3 Axles min.
120.00
8

$\begin{aligned} & \text { Acces- } \\ & \text { sories } \end{aligned}$	Regulations		
	Escorts	Operations.	Towing Vehicle
S (3.75)	NC		$99 \mathrm{in} . \mathrm{WB}-118 \mathrm{in}$.
s (3.75)	Add escort	5-1/2 Day ops - 5	NC
F (1.25)	on 2-lane (1.50)	7 Holidays - 10	
L 15.00			

0

!

S (3.75)
F (1.25)
F (1.25) Add escort

$\begin{array}{c}\text { Border Combination } \\ \text { From - To }\end{array}$

Oklahoma - Kansas
Kentucky - Ohio
2

0
S (3.75)
F (1.25)
F (1.25)
L 15.00
Kentucky - West Virginia
Ohio - Kentucky
-

costs	
Absorbed (s)	Add-0n
-)	-0-
(6.25)	30.00
(3.75)	-0-
(3.75-7.50)	15.00

$00 \cdot 5$ 「Ti-00.02

n
$\stackrel{y}{6}$

:

NR - Lowboy trl $\quad 50.00$ Police escort
(1.50)
Add escort (1.50)
9 a.m. to $3: 30$ p.m. -
9 a.m. to 3 p.m.
$(\underline{0-3.75)}$
号

$\begin{array}{ll}\text { S (3.75) } \\ \text { F (1.25) } \\ \text { L. } & 15.00\end{array}$
$\stackrel{\pi}{n}$
$\stackrel{\omega}{\omega}$
ω

Maryland - West Virginia

Border Combination
$\frac{\text { From - To }}{\text { Louisiana - Texas }}$
Louisiana - Texas
Texas - Louisiana

Maine - New Hampshire New Hampshire - Maine

i N (2.00)

O
$\dot{-} \quad i$
i
8
$\stackrel{8}{4}$
-
$\stackrel{+}{\circ}$
$\stackrel{+}{\circ}$
$\dot{9}$
(6.50-36.50)
table C-2 (Continued)
Regulations
Dimensions and

Equipment
Dimensin

Operations
NC
$\begin{aligned} & \text { fereight }-13 \mathrm{ft} 6 \mathrm{in} . \\ & \text { NR }-4 \text { Axles win. } \\ & 240.00\end{aligned}$
on
240.00

0
15 ft Height - 14 ft
NR -3 Axles min.

1-1/2 Ton capacity $-\underset{(2.00)}{2}$ Tons
NR $-120 \mathrm{in} . \mathrm{WB}$
O
!

\%
NR - 2 Ton capacity (3.25)
NR - Cabtop light
NC

Towing Vehicle

8 Hol idays - 12
nc
NC

『

Escorts
Police escort
(1.50)
$\left(0 S_{1} \mathrm{t}\right)$
$\left(02^{\circ} \mathrm{T}\right)$

:
8
O
号
SR-SS - 9 a.m. to 3 p.m.
1-1/2 Day holiday - $\frac{(0-30.00)}{}$
2-1/2 Days

NC
$\underset{z}{2}$
8
(3.75)
(1.25)
$\frac{\begin{array}{c}\text { Border Combination } \\ \text { From - To }\end{array}}{\text { Massachusetts - Vermont }}$
Massachusetts - Vermont
Vermont - Massachusetts

Border Combination From - To	- Regulations					Costs	
	$\begin{aligned} & \text { Acces- } \\ & \text { sories } \end{aligned}$	Escorts	Operations	Towing Vehicle	Dimensions and Equipment	Absorbed (s)	$\begin{aligned} & \text { Add-On } \\ & (\$) . \end{aligned}$
Minnesora - North Dakota	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	NC	nc	vc	NC	(5.00)	-0-
North Dakota - Minnesota	$\begin{array}{ll} \text { S (3.75) } \\ \text { F (1.25) } \\ \text { L } 15.00 \end{array}$	N	NR - R.H. curfew in cities 1-1/2 Day holiday - 2 Days	NR - 100 in . Min. WB	NR - 70 ft Coach L NR - 85 ft Comb. L	(5.00)	15.00
Minnesota - South Dakota	E (1.25)	NC	6 Holidays - 9 Holiday only - 2 Days	NR - Cabtop light	Min. - Brakes on 2 axles 30.00	(1.25)	30.00
South Dakota - Minnesota	NC	NC	$\begin{aligned} & \text { 5-1/2 Day ops - } 5 \\ & \text { NR - R.H. curfew in cities } \end{aligned}$	NR - 100 in . Min. WB	$\begin{aligned} & \text { NR }-13 \mathrm{ft} 6 \mathrm{in} . \text { Height } \\ & \text { NR }-70 \mathrm{ft} \text { Coach } \mathrm{L} \\ & \text { NR }-85 \mathrm{ft} \text { Comb. } \mathrm{L} \end{aligned}$	-0-	-0-
Minnesota - Wisconsin	$\begin{array}{ll} \text { F }(1.25) \\ \text { L } & 15.00 \end{array}$	NC	NC	NR - Cabtop light	NR - 3 Axles min. $\begin{gathered} 150.00 \\ \text { Min. - Brakes on all axles } \\ 30.00 \end{gathered}$	(1.25)	195.00
Wisconsin - Minnesota	$\begin{array}{ll} \text { S } & (3.75) \\ \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	NC	1-1/2 Day holiday - 2 Days	$\begin{aligned} & 1-1 / 2 \text { Ton capacity }-2 \text { Tons } \\ & \text { NR }-100 \mathrm{in} . \text { Min. } \mathrm{WB} \end{aligned}$	$\mathrm{NR}-13 \mathrm{ft} 6 \mathrm{in}$. Height	- 7.00)	15.: :

$\substack{\text { Add }-0 n \\(\$)}$
$-0-$
$\stackrel{8}{\square}$
$\stackrel{\circ}{\circ}$

8

i
$\stackrel{8}{\square}$
$\begin{aligned} & \text { Absorbed } \\ & \text { (}(5)\end{aligned}$
(5.00)
(5.00-6.50)
(1.25)
$(0-1.50)$
25-2.75)
(8.25)
table C-2 (Gontinued)
$\underset{N R-13 \mathrm{ft} 6 \mathrm{in} . \text { Height }}{\substack{\text { Dimensions and } \\ \text { Equipment }}}$
NR - 70 ft Coach L

วN
艺
30.00
$\%$
6 Hol idays - 9
5-1/2 Day ops - 5
Escorts
NC
Add escort except
Interstate
$(\underline{(1.50)}$
F (1.25) NC

L $15.00 \quad$| Add escort except |
| :---: |
| Interstate |

范
Acces-
sories
S (3.75)
F (1.25)
$S(3.75)$
F (1.25)
15.00
F (1.25)
~3

Montana - : North Dakota
North Dakota - Montana
Montana - South Dakota

$$
\begin{gathered}
\text { Operations } \\
\text { Holiday only }-1-1 / 2 \text { Days }
\end{gathered}
$$

6 Holidays - 10
7 Day ops - 5
$\frac{\begin{array}{c}\text { Border Combination } \\ \text { From }- \text { To }\end{array}}{\text { Montana - North Dakota }}$

Border Combination \qquad	Regulations					Costs	
	Acces- sories	Escorts	Operations	Towing vehicle	Dimensions and Equipment	Abscrbed \qquad	$\begin{aligned} & \text { Add-0r } \\ & \text { (s) } \\ & \hline \end{aligned}$
Nebraska - South Dakota	$\begin{array}{ll} \text { S }(3.75) \\ \mathrm{F} & (1.25) \end{array}$	sc	nc	$\begin{aligned} & \text { 1-1/2 Ton capacity - }-2 \text { Tons } \\ & \text { NR - Cabtop light } \end{aligned}$	vc	(7.03)	-0-
South Dakota - Nebraska	$\begin{array}{ll} \text { S (3.75) } \\ \text { L } 15.00 \end{array}$	Add escort except Interstate (1.50)	$\begin{aligned} & 5-1 / 2 \text { Day ops }-5 \\ & 7 \text { Holidays }-9 \\ & \text { NR - No Interstate travel } \end{aligned}$	NR - 120 in. Min. wb		(3.75-5.25)	15.00-135.00
Nebraska - Wyoming	F (1.25)	$\begin{aligned} & \text { Add escort on } \\ & \text { 2-1ane (1.50) } \end{aligned}$	NC	NC	NC	(1.25-2.75)	-0-
Wyoming - Nebraska	$\begin{array}{ll} \text { S (3.75) } \\ \text { F (1.25) } \\ \text { L } 15.00 \end{array}$	NC	$\begin{aligned} & 7 \text { Day ops }-5 \\ & 7 \text { Holidays }-10 \\ & \text { NR - No Interstate trave } \end{aligned}$	NR - 1-1/2 Ton capacity $N R-120 \mathrm{in} . \mathrm{Min} . \mathrm{WB}^{(1.25)}$	$\begin{aligned} & \text { NR }-13 \mathrm{ft} 6 \text { in. Height } \\ & \text { NR }-65 \mathrm{ft} \text { Coach. } \mathrm{L} \\ & \text { NR }-85 \mathrm{ft} \text { Comb. } \mathrm{L} \\ & \text { NR }-3 \text { Axles if coach }>60 \mathrm{ft} \\ & \text { NR - Brakes on } \frac{120.00}{2 \mathrm{ax} \text { eses }} \\ & \quad 30.00 \end{aligned}$	(6.25)	45.00-165.00
Nevada - Oregon	$\begin{array}{ll} \text { S } & (3.75) \\ \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	NC	NR - R.H. curfew in cities	NR - 120 in. Min. WB	$\begin{array}{r} \text { NR - Brakes on } 2 \text { axles } \\ 30.00 \end{array}$	(5.00)	45.00
Oregon - Nevada	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Add escort except on 2-lane (1.50)	6 Holidays - 8	NR - Cabtop light	NC	(5.00-6.50)	15.00

Costs	
Abaorbed $(\$)$	Add-On (S)
(5.00)	30.00

\vdots
i

$\stackrel{\underset{\sim}{n}}{\stackrel{\pi}{n}}$
(5.25)
$(5.75-13.25)$
(5.00-6.50)

Border Combination \qquad			Regulations	仡	
	Accessories	Escorts	Operations	Towing Vehicle	Dimensions and Equippuent
Nevada - Utah	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	NC	NR - R.H. curfew in cities Holiday only - 1-1/2 Days	NR - 100 in. Min. wb	$\begin{array}{r} \text { NR - Brakes on } 2 \text { axles } \\ 30.00 \end{array}$
Utah - Nevada	$\begin{aligned} & \mathrm{S}(3.75) \\ & \mathrm{F}(1.25) \end{aligned}$	Add escort (1.50)	7 Holidays - 8	$\begin{aligned} & 1-1 / 2 \text { Ton capacity }-2 \text { Tons } \\ & \text { (2.00) } \end{aligned}$	$\begin{gathered} 2-3 \text { Axle }-3 \text { Axles min. } \\ \underline{120.00} \end{gathered}$
New Hampshire - Vermont	s (3.75)	Police escort (1.50)	NC	NR - Cabtop light	NC
Vermont - New Hamp shire	s (3.75)	Add escort (1.50)	8 Holidays - 10	NC	NC
New Mexico - Oklahoma	S (3.75)	NC	$\begin{aligned} & \text { NR - R.H. curfew in cities } \\ & \text { SR-SS }-9 \text { a.m. }- \text { SS } \\ & 7 \text { Holidays }-\underline{(0-7.50)} \end{aligned}$	$\begin{aligned} & 1-1 / 2 \text { Ton capacity }-2 \text { Tons } \\ & 99 \mathrm{in} . \text { WB }-118 \mathrm{in} . \end{aligned}$	$\begin{gathered} \text { NR - } 3 \text { Axles if coach } \\ >65 \mathrm{ft} \quad 120.00 \end{gathered}$
Oklahoma - New Mexico	$\begin{array}{ll} \text { S } & (3.75) \\ \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	Add escort except on 2-lane (1.50)	5-1/2 Day ops - 5	NR - Cabtop light	NR - 13 ft 6 in . Height NR - 80 ft Coach L NR - 95 ft Comb. L

New Mexico - Oklahoma
Oklahoma - New Mexico
TABLE C-2 (Continued)

costs	
Absorbed (s)	$\begin{aligned} & \text { Add-on } \\ & (s) \\ & \hline \end{aligned}$
(1.25)	-0-
(7.75)	15.00
(9.75-36.00)	-0-
(6.50)	15.00
(5.00)	30.00
(5.00)	-0

	Regulations					Costs	
Border Combination $\xrightarrow{\text { From - To }}$ \qquad	$\begin{aligned} & \text { Acces- } \\ & \text { sories } \end{aligned}$	Escorts	Operations	Towing Vehicle	Dimensions and Equipment	Absorbed (5)	$\begin{aligned} & \text { add-on } \\ & \begin{array}{c} \left(s^{\prime}\right) \\ \hline \end{array} \\ & \hline \end{aligned}$
Ohio - West Virginia	$\begin{aligned} & S(3.75) \\ & F(1.25) \end{aligned}$	Add escort (1.50)	6 Holiday - -	NC	13 ft 6 in . Height - 12 ft 6 in 83 ft Comb. L-75 ft	in. (6.jn)	-9,
West Virginia - Ohio	$\begin{array}{ll} \text { S } & (3.75) \\ \text { F } & (1.25) \\ \text { L } & 15.00 \end{array}$	NC	Holiday only - 1-1/2 Days	NC	$\begin{array}{r} 3 \text { Axles - } 4 \text { Axles min. } \\ 120.00 \end{array}$	(5.00)	135.00
Oklahoma - Texas	nc	NC	$\begin{aligned} & 5-1 / 2 \text { Day ops - } 5 \\ & \text { NR - No Interstate trave } \end{aligned}$	NC	NC	-0.	-0-
Texas - Oklahoma	$\begin{aligned} & \text { S (3.75) } \\ & \text { F (1.25) } \end{aligned}$	Add escort (1.50)	$\begin{aligned} & \text { SR-SS - } 9 \text { a.m. -SS } \\ & 0 \text { Holidays - } 7 \\ & \text { NR }-1-1 / 2 \text { Day holiday } \\ & \text { NR - No turnike travel } \end{aligned}$	Min, capacity - 2 Tons (3.25) NR - 120 in . Min. WB	$\begin{array}{r} \text { NR - } 3 \text { Axles if load } \\ >65 \mathrm{ft} \xrightarrow{120.00} \end{array}$	(9.75-17.25)	0-120.00
Oregon - Washington	$\begin{array}{ll} \text { S } \quad(3.75) \\ \text { L } 15.00 \end{array}$	NC	$\begin{aligned} & 5 \text { Day ops }-4-3 / 4 \\ & \text { Holiday only }-1-1 / 2 \text { Days } \end{aligned}$	NC	NC	(3.75)	15.00
Washington - Oregon	$\begin{array}{ll} \text { s (3.75) } \\ \text { L } 15.00 \end{array}$	NC	NR - R.H. curfew in cities	NC	$\begin{gathered} 2-3 \text { Axles }-3 \text { Axles min. } \\ \underline{120.00} \end{gathered}$	(3.75)	15.00-135.00

costs	
Absorbed	Add-On
(s)	(
(1.25-2.75)	-0-
(8.25)	30.00
(1.25-2.75)	-0-
(6.25-7.75)	0-165.00

$\frac{$| Border Combination |
| :---: |
| From - To |}{South Dakota - Wyoming} Wyoming - South Dakota

Wyoming - Utah

APPENDIX D

TRAFFIC DATA COLLECTION AND REDUCTION

D-1

Data were obtained to identify and measure the effect on other traffic of the highway shipment of 12 - and 14 -wide mobile homes and modular houses. Two kinds of data were gathered. In a major effort, timelapse photographs were obtained of traffic in the vicinity of the wide loads. The photographing was alternately conducted from inside the load, from the cab of the towing tractor and from escort vehicles. The second kind of data collected was counts of traffic events over timed intervals. The data collection and reduction activities are described in this appendix.

A. Data Collection

1. Equipment: The photographs were obtained using 16 mm Bolex Mode1 H-16 cameras (MRI equipment). The cameras as manufactured are spring motor driven with filming rate adjustable down to eight frames/sec. New motorized drives were designed, fabricated and installed on the cameras to provide accurately timed frame rates down to one frame/sec. The drive mechanism consisted of a $1,800 \mathrm{rpm}, 1 / 375 \mathrm{hp}$ synchronous motor, interchangeable gear heads for frame rate adjustment and a crank-connecting-rod attachment between the gear box shaft and a sliding lever shutter release on the camera. The motor was driven by a $12-V$ DC automotive battery through a Tripp-Lite Mode1 PV250FC, frequency controlled power inverter.

The cameras as supplied were equipped with rotating disk shutters with an exposure time of approximately $1 / 25 \mathrm{sec}$. Since this was too slow for our application, new shutter disks were made to obtain exposure times of approximately $1 / 400 \mathrm{sec}$.

A safety chair was designed for the photographer when inside the wide load (Figure D-1). It consisted of a seat and back with an adjustable height support post, equipped with a seat belt and wide-span aluminum support feet for stability. The unit was designed for rapid assembly and compact packaging when not in use. It provided stability from tilting and, with foot pads, prevented sliding.

Commercially available shoulder pods were used for camera mounting.* Crash helmets were provided for additional safety when photographing from inside the wide load.

* Both shoulder pods and tripod mounts were tested. Camera vibration due to road surface irregularities and extraneous disturbances was found to be much smaller when using the shoulder pods.

Camera with Shutter Drive
Figure D-1 - Experimental Equipment

Eastman Kodak Ektachrome color film Type EF 7241 was used for all of the photographing. Several other films were tested, notably other color films and black and white films with high resolution capability. The Type EF 7241 film was selected because it demonstrates good resolution capability is reasonably high speed, and has the advantage of color discrimination over the black and white films.

Lenses of 100 mm focal length were used in the data collection. The lens choice was based principally on the need to obtain a relatively large image of vehicles at ranges up to at least 500 ft to facilitate determination of speed prior to any effect by the wide load. Also, we wanted to track vehicles up to within about 50 ft of the camera. Other factors taken into account in the lens selection were film type and shutter speed.

A complete set of field equipment consisted of:

Camera with lens and shutter drive,
Shoulder pod,
Photographer seat,
Battery and case,
Power inverter,
Exposure meter,
Intercom set,*
Battery charger, and
Tool kit.

Two sets of equipment were required because two field teams operated simultaneously. A third camera and power inverter were obtained for emergency stand-by.
2. Methods for photographic data collection: Photographing was conducted from inside the wide load, from the tractor cab and from various escort, vehicles. Photographing from inside the wide load required the most preparation. In this instance a two-man crew was employed with one man riding in the tractor cab recording wide load speed while the other photographed overtaking traffic. $\% *$ Set-up activities included:

* An intercom set was supplied so the photographer in the wide load and the observer in the tractor cab could coordinate their activities.
** Periods of counting passers and oncomers, recording the size of the trailing queue, etc., were alternated with the photographic data collection. This activity, which required increased participation by the observer in the cab is described in a later section.

Installation of intercom (requiring a $100-\mathrm{ft}$ cable to be strung from the inside rear of the wide load to the tractor $c a b$ and suitably anchored).

Erection of photographer seat.
Assembly of camera and shoulder pod.

Electrical hook-up between battery and inverter.

It was essential that the intercom installation be completed before the trip started. The other activities could be completed enroute if necessary, although with some inconvenience. Fortunately, it was usually possible to obtain entry to the wide load early enough to complete all setup prior to departure. The cooperating manufacturers and carriers were very helpful in this regard. A "Trip Data" form (Figure D-2) was filled out for each trip describing the load and route traveled. This was normally accomplished prior to departure also.

Once underway the photographing activity was fairly straightforward. The photographer watched for freely traveling vehicles in the overtaking traffic. When a candidate appeared and reached the range of interest (600-700 ft) the photographer notified the team member in the cab and then filmed the subject vehicle until it either passed the wide load, arrived in queue or exited the highway. During the filming the observer in the cab recorded speedometer readings at 15 sec intervals on the form shown in Figure D-3. The photographer recorded each photographic sequence on the "Photography Log" shown in Figure D-4. The entries on these two forms were designed to facilitate data reduction by correlating the wide load speed with the photographic sequence and by assisting in the identification of vehicles. (The photographers were encouraged to record vehicle make and model whenever possible.)

On trips where photographing of oncoming vehicles was done from the tractor cab, only one man was needed and it was not necessary to set up the intercom system or the safety seat. Use of the tractor battery as a power source was considered but not pursued. We used our own separate battery to ensure a uniform power supply voltage and to avoid extra imposition on the cooperating carrier. Photographic data were collected exclusively on these trips, i.e., there was no alternation with manually recorded observations as in the case of photographing from inside the wide load. In entering sequences on the Photography Log, the photographer recorded the speedometer reading at the beginning and end of the sequence. This furnished a good description of the wide load speed because the duration of these sequences seldom exceeded $8-10 \mathrm{sec}$. Freely traveling vehicles were awaited and filmed, similar to the method used for overtaking traffic.

Trip Data

Trip. No. \qquad Date \qquad Observer \qquad
Mobile-Sinqle \qquad Mobile - Doublewide \qquad Modular \qquad
Manufacturer and Model \qquad
Gross wt (include trailer if modular) \qquad No. of axles \qquad
Width \qquad Length \qquad Height \qquad
Attachment: Tongue \& Ball \qquad Pintle \qquad Fifth Wheel \qquad

Tractor Make \& Model \qquad
Horsepower (Indicate Net or Max) \qquad Wheelbase \qquad
No. of Speeds forward \qquad Tractor Weight \qquad

Driver approx. age \qquad Years commercial driver \qquad
Years in home transporting \qquad Licenses \qquad Safety features (Signs, flags, escorts, flashing lights, etc.)

Route (Origin, Destination, Highways)
Figure D-2 - Trip Data Form

OBSERVATIONS FROM CAB WHEN MAN IN HOUSE IS PHOTOGRAPHING Trip No.__ Date___ Observer___ Page__of

Figure D-3 - Form for Recording Speed During Filming

Photography Log
Trip No. \qquad Date \qquad Observer \qquad Film No. \qquad Page - of Camera in: House \qquad Cab \qquad Front Escort \qquad Rear Escort \qquad Other \qquad
Frames per Second: One \qquad Five \qquad
$\begin{array}{l|l|l|l|l|}\hline \begin{array}{c}\text { Seq. } \\ \text { No. }\end{array} & \text { At End of Sequence }\end{array}$ (time $\left.\begin{array}{c}\text { Identification } \\ \text { (car color, etc) }\end{array}\right)$

* Does not apply when camera is *it Severe braking in house.

2. off on shoulder

When camera is in cab record speedometer at beginning and end of sequence
3. Aborted pass or lane change
4. Congestion caused by slow traffic
s. Fishtailing or rear end wobble 6. Wind effect?

When filming was done from escort vehicles both team members made the trip. The photographer concentrated on filming and the second man filled out the Photography Log and noted extraneous incidents of interest. Most of the time only photographic data were collected. On two trips made in a rear escort vehicle the photographing was alternated with passing and queuing observations, just as in the case of photographing from inside the wide load. $\%$

Filming of oncoming traffic was done at 300 frames/min. Overtaking traffic was filmed at 50 frames/min. (We had intended to film at 60 frames/min. However, a supplier sent 50 rpm gear boxes by mistake and we kept them because of unfavorable delivery schedules.)
3. Organization of field activities: The photographic data collection was made possible through the cooperation of manufacturers and contract carriers. Data were collected over as wide a range of geographical locations as possible within the constraints of industry availability, carrier cooperation, business volume, legality of riding inside the wide load, and local regulations pertaining to highway and escort usage. Our data collection trips covered all major regions of the country except the southwest. Texas and California prohibit riding inside a trailer. We considered making some trips out of the Phoenix area near the end of the data collection activity. We did not, however, because the highway types and escort requirements were not compatible with our data collection needs.

A data collection area was established by choosing a desirable geographical region, verifying the legality of riding with the wide loads and soliciting cooperation from local manufacturers and carriers. If adequate agreements to cooperate were obtained a data collection team was dispatched to the area to set up headquarters near the center of wide load activity. In all but a few isolated cases the team had to schedule their trips on the spot by maintaining contact with the available cooperators. Local scheduling was necessary because wide load shipments are generally made with short advance notice (less than 24 hr). The field team kept advised of data priorities by telephone and the overall process worked out satisfactorily.

[^2]4. Collection of data on passing and queuing: A second category of data was collected to determine the frequency of occurrence of selected maneuvers under varied conditions of load size, speed, highway type, etc. These data on event frequencies were used, together with information obtained from the photographic data, to calculate the cost to the motoring public of highway shipment of the wide loads.

The data were gathered in a straightforward manner by counting and recording the specific information described below. These data were collected alternately with the photographic data when the photographer was riding inside the wide load.* Typically, the two types of data collection were alternated at $15-$ min intervals.

The count of events was recorded on the data forms illustrated in Figures $D-5$ to $D-7$. The observer in the wide load used the data form in Figure D-5; the observer in the tractor cab used the form in Figure D-6 for two-1 ane highways and the form in Figure $D-7$ for multilane highways. The observations made from inside the load and from the cab were synchronized by frequent time checks via the intercom system. The information collected is described below, beginning with the data form in Figure $D-5$.

Each trip was identified by a trip number of the form 1-7 or $2-3$. The first digit identified the camera used so that in analyzing the photographic data the unique calibration constants for that camera could be identified. The second digit was a trip sequence number. The two sample numbers cited above, for example, refer to the seventh trip with camera 1 and the third trip with camera $2 . * *$

Observations were made for 1 -min intervals. The clock time at the beginning of an interval was recorded in the column headed "Time." The vehicles in queue at the beginning of the time interval were entered in the next two columns using the vehicle codes listed at the bottom of the data form. Thus, $\sqrt{ } \sqrt{ }$ TP indicates a queue of two passenger vehicles, a truck and a pickup. The spatial order in queue was not reproduced on the data form, only the number of vehicles of each class. Columns to the right of the heavy vertical line contain counts of events which occurred during the minute interval, entered by vehicle code. The first four columns refer to the wide load.

[^3]
TWO-WAY HIGHWAYS- OBSERVATIONS FROM CAB
TrIP No.

A passenger vehicle passing the wide load from out of queue, for example, was recorded by a checkmark in the column labeled "Passes from Queue." "Leapfrogging" in queue was noted in the next column. Lane changing (next two columns) was observed in a length of approximately 500 ft behind the wide load.* The three columns under "Escort" apply when a rear escort is present. The first column contains a count of "flying" passes, i.e., overtaking and passing with no discernible speed changes. The second column contains a count of vehicles which pass the rear escort from a queue and the next column contains a count of lane changes from lane 1 to 2 within approximately 500 ft behind the rear escort. The final column is reserved for specific incidents such as those enumerated at the bottom of the data form. The observers were encouraged to note as well any "out-of-the-ordinary" occurrences.

Turning next to the form used by the observer in the cab on two-lane highways (Figure D-6) similarities can be seen with the form just discussed. The first column contains clock time as before, the second contains the speedometer reading at the beginning of the interval, the next the odometer reading, $* *$ then the posted speed limit and a description of the queue behind the front escort (if there was an escort). Columns to the right of the heavy vertical line again contain counts of events which occurred during the interval. They include oncomers (approaching and passing from the front), vehicles passing the wide load from behind, passes of the front escort and vehicles passed by the wide load. The next column labeled "Int. and Cause" refers to wide load intrusions into the oncomer lane, an intrusion meaning that some part of the load crossed the highway centerline and temporarily blocked part of the other lane. The listed causes are self-explanatory. The column labeled "Imp. and Cause" refers to impedances to the wide load by other vehicles or by traffic control devices. The comments column serves more or less the same purpose as that in Figure D-5 with additional recommended comments on observations listed as footnote 3 .

The form for multilane highways in Figure $D-7$ is similar to the two other forms and most of the column labels are self-explanatory. On multilane highways, the lane occupied by the wide load at the beginning of 1 -min intervals is recorded, passers are subdivided into those in the lane immediately on the left, all others on the left and those on the right.

* On multilane highways, lane one refers to the right-hand lane and lane two to the next lane over. On two-lane highways, lane one again refers to the right hand lane and lane two to the lane for opposing traffic.
**: The odometer was recorded frequently but not necessarily every minute.

1. Photographic data: The reduction of the photographic data was structured around the fact that the basic information sought from the film was the speed-distance profiles of vehicles approaching and passing the wide load from behind (overtakers) and from the front (oncomers). Distance and speed can be determined from the image size (or change in size from frame to frame) of known vehicle dimensions such as headlight spacing, tread width, etc. Data reduction therefore consisted primarily in the measurement of projected image dimensions and the recording of supplemental identifiers required for the calculation of distance and speed. Measurements were also made which enabled estimation of lane width and lateral placement of oncomers.
a. Data reduction equipment: The photographic data reduction equipment consisted of two major items, namely, a 16 mm film projector and a projection screen with attached measuring instruments.

The slide projector was a Model 16N Mark III "Selecta Frame Stop Motion Projector" marketed by Producers Service Corporation, Glendale, California. The single frame advance capability was, of course, essential for the application.

The film was back projected on a ground glass screen mounted on a framework with attached measurement instrumentation (Figure D-8). This equipment was designed and built especially for this data reduction activity. The measurement assembly consisted of two parallel, moveable arms, each carrying a fine vertical wire, and a metric scale fixed to one of the arms. An image dimension was measured in two steps. The left arm was positioned so that its vertical wire coincided with the left side of the object being measured. This arm (and the scale) was then locked in place using a quicklock mechanism provided. Next the right arm was positioned so that its vertical wire coincided with the right extremity of the object being measured. The dimension was then read directly by means of a pointer attached to the right arm. The scale was graduated in millimeters and measurements to the nearest millimeter were routinely made.
b. Reduction method: The data reduction was conducted in three steps:

1. A film roll was reviewed to select the vehicle sequences to be measured. (The sequences were identified by first and last frame number provided by a frame counter on the projector).

2. After the review a film measuring team (two persons) obtained the dimensional and other necessary data from each frame of the selected sequences and recorded it on a special data form.
3. In the final step the reduced data were keypunched on cards for computer analysis.
c. Film review: The film review was conducted by persons familiar with the objectives of the study and cognizant of the data needs. When a vehicle was selected for measurement in the film frame numbers were recorded as noted earlier and the make, model and model year identified. This identification, which was necessary in order that true vehicle dimensions could be determined in the subsequent analysis, proved to be difficult and time consuming. To facilitate the process a vehicle "mug" book was obtained containing photographs of foreign and domestic automobiles and some pickup trucks. A compilation of automobile photographs was also obtained from an automotive repair reference manual. Large trucks were more of a problem. There were no available photographic files so MRI personnel visited local truck sales agencies and compiled a fairly comprehensive album. Using this stockpile of information we were able to identify all passenger vehicles of interest and most of the pickup trucks. Some large trucks had to be bypassed, however, because they could not be uniquely identified.
d. Data extraction: After the photographic sequences of interest were identified, dimensional and other data were taken from the film. Some of the data were needed to calculate speed-distance profiles of the photographed vehicles. The rest related to descriptions of the maneuver performed by the vehicle and the general character of the road (lane occupied, shoulder type, lane width, etc.).

The data needed for calculating speed-distance profiles included measurements of the (projected) image size of characteristic features of the vehicle, and an estimate of the angle between the line of sight of the camera and the center line of the vehicle.

Measurements of vehicle features were confined almost entirely to headlight spacing, windshield width (top and bottom) and tread width (center to center of front tires). At least one measurement was made in each frame.* In the first few (usually five) and the last few

[^4](usually three) frames in a sequence, two or three features were measured. The purpose was to provide redundant measurements which could be used to minimize the errors in computed speed and distance arising from inherent measurement errors. The angle between the line of sight of the camera and the center line of the vehicle was estimated with the help of photographs made of a conventional passenger sedan at a sequence of angles, each at ranges of 100,200 and 500 ft .

For lane width estimation the image lane width and tread width were measured in one frame of a sequence. For oncomer lateral placement estimation the distance from the road center line to the left front tire of the oncomer and the tread width were measured in the frame of closest approach.
c. Keypunching of film data: The data taken from the film were keypunched directly from the forms on which they were recorded by the film readers. Intermediate coding of the data was not necessary. The keypunching job was fairly extensive since somewhat more than 25,000 cards were produced.
2. Data on Passing and Queuing: The manually recorded data on passing and queuing were reduced by summarizing on special forms, coding, and keypunching on cards for computer processing. This three step procedure was adopted because the data were not as voluminous as the photographic data and because they were tedious to transcribe since they had been recorded while riding in moving vehicles under sometimes adverse conditions.

The data were grouped into time periods, normally of 15 min extent, but occasionally ranging down to 5 min or up to as much as 30 min . The grouping was done on the basis of continuity of data collection, i.e., contiguous minutes of data collection were combined. The 15 min period predominated because (as noted earlier) the data collection crews normally alternated between photographing and event counting on 15 min intervals.

Summarizing of the data required a moderate amount of time because some interpreting and summing/differencing of the observed events were required. Coding and keypunching were relatively easy because the data were considerably compacted and confined to a total of about 300 cards.
3. Vehicle dimensional data: Calculation of speed-distance profiles for the filmed traffic required knowledge of vehicle dimensional data such as tread width, windshield width, etc. After viewing test films and considering various alternatives we decided to assemble a table of:

Top-of-the-windshield widths.*
Tire tread widths.
Center-to-center spacing of outer headlights.
The most obvious dimension, the overall width of the vehicle, is not suitable because it is not clearly defined on film unless the vehicle is viewed directly head on.

Our desire was to assemble as complete a table as possible for passenger vehicles (foreign and domestic), pickup trucks and truck-tractors for the model years 1962-1973.

The three major domestic automotive manufacturers and the Motor Vehicle Manufacturers Association were contacted and, although we received headlight spacing data for the last three model years from one manufacturer, more generally we learned that they could not provide us with the information requested. The reason was that the manufacturers do not have the data available in an assembled form. (Early in the project we were led to believe such data were available.)

At the suggestion of the Kansas City, Missouri, Police Department we obtained a copy of a vehicle indentification book** containing photographs whict were helpful in identifying venicles in the films and which also contained tire tread widths for most domestic passenger cars for the model years 1962 through 1973 and for 34 foreign car lines for the model years 1967-1973. This information reasonably well satisfied our need for passenger car tread widths.

Windshield and headlight dimensions for passenger cars were obtained by direct measurement. An oversize caliper was constructed (Figure D-9) and MRI personnel assembled a large quantity of dimensional data by measuring vehicles at various local automobile sales agencies.

Dimensional data, including tread width, were also obtained for pickup trucks and truck-tractors by direct measurement. Photographs were taken of the truck-tractors to assist in the identification of these vehicles.

[^5]
(Pictures of pickup trucks were available in the identification book obtained from The Automotive Index.* Unfortunately, tread widths for pickups were not included as they were for passenger vehicles.)

The complete assemblage of dimensional data was examined for variation between models and body styles to determine how the data could be grouped within a reasonable number of categories. ${ }^{*}$. Since the dimensions involved were of the order of 50 in . (top of windshields) and larger it was decided that it would be acceptable to group measures which varied by less than ± 1 in. A total of 169 vehicle categories were determined to have distinguishable dimensional characteristics.*** Since we were interested in 12 model years and each category included three feature dimensions our vehicle dimension array totaled $169 \times 12 \times 3=6,084$ elements. This was still an impressively large number and many of the elements were not determined. Usually, however, the undetermined elements represented relatively obscure vehicles not likely to appear in the films. This was verified by the fact that only a very few passenger vehicle samples available in the films could not be processed for lack of dimensional data. Comparatively more pickup truck and truck-tractor samples had to be omitted but the number of such cases was judged not large enough to warrant the additional time and expense required to more completely fill the dimension table.

In addition to the above we also needed nominal values for the "offset" distance from the headlight plane back to the center of the front wheels and to the top of the windshield. $\%$. $\%$ A set of 14 categories was selected which included full-size automobiles, compacts, intermediates, etc. Offsets were measured for several vehicles in each category and a tabulation of average values were compiled and made part of the vehicle dimensional data.
4. Calculation of speed-distance profiles: The calculation of speed-distance profiles made use of simple basic relationships. Special computation techniques were devised to optimize the calculations.

[^6]a. Basic relationships: The simple optical relationship illustrated in Figure D-10 was employed. For the pictured ideal case of a point lens with no optical distortion we can write
\[

$$
\begin{equation*}
\frac{I}{D}=\frac{f}{R} \tag{D-1}
\end{equation*}
$$

\]

where: $\quad D=$ true dimension of a vehicle feature (say the tread width)
$R=$ range or distance from camera to vehicle
$I=$ image size of the dimension D
$\mathrm{f}=$ lens focal length
Eq. ($D-1$) contains the camera focal length and the image size on the film. A similar expression can be written for the projected image:

$$
\begin{equation*}
\frac{\bar{I}}{D}=\frac{m f}{R} \tag{D-2}
\end{equation*}
$$

where: D, f and R are as previously defined

$$
\begin{aligned}
& \bar{I}=\text { size of the proiected image of } D \\
& m=\text { projection magnification }
\end{aligned}
$$

It is useful to rewrite Eq. D-2 in the form:

$$
\begin{equation*}
\mathrm{R}=(\mathrm{mf}) \frac{\mathrm{D}}{\overline{\mathrm{I}}} \tag{D-3}
\end{equation*}
$$

If the condition of projection is unchanged, mf is constant and Eq. D-3 states that the distance to the photographed vehicle is equal to a constant multiplying the ratio of the true size of a vehicle feature to its projected size.

Figure D-10 - Simple Optical Relationships

The constant mf could have been evaluated by measuring the projection magnification m since the nominal focal length of the lens was known. We preferred, however, to obtain the product $m f$ by measuring the projected image size of a 6 ft target photographed at several ranges ($100-\mathrm{ft}$ to 700 ft in 100 ft intervals). Account is thereby taken of any consistent deviation from the optical ideal, and variations with range will be revealed if they exist. The results obtained for the two data cameras are shown in Figure $D-11$. It is seen that $I R / D$ is equal in both cases and constant (i.e., independent of range).
b. Computation technique: The speed-distance* profiles were calculated using a technique designed to minimize the effect of film reading inaccuracies. Distance and speed were calculated for each photographic frame, thereby providing a detailed profile defined at closely spaced points in time.

The initial step in the procedure used Eq. D-3 to calculate the distance to the photographed vehicle corresponding to each vehicle measurement in each photographic frame. All distances were referred to the plane containing the headlights. For example, if a distance was calculated by Eq. D-3 based on windshield width it was adjusted by subtracting the dis~ tance from the windshield plane to the headlight plane.

Next, a best estimate of distance for each frame was obtained by fitting a least squares linear regression line to the distances initially calculated for the frame and the two frames on each side of it. $\% *$ To guard against spurious results it was required that there be at least three calculated distances in the sequence of frames.

The estimate was then refined by examining the deviations of the individual calculated distances from the regression line. If the worst point deviated more than a threshold amount $\%$ ** it was discarded, a new line

* In the following discussion both speed and distance are relative values, i.e., measured with respect to the vehicle carrying the camera. This is in essence a five-frame smoothing procedure for interior frames in the sequence. For the first and last frame three consecutive frames were used and for the next to first and next to last, four frames were used.

An absolute threshold was not specified. Rather, an amount was used corresponding approximately to the discrepancy in distance which would result from a film reading error of 2 mm . In this way control over the use of bad points was provided which recognized both a realistic level of measurement error and the camouflaging effect of range.
D-24

was calculated and the refinement procedure repeated until the remaining points fell within the threshold of acceptance or the number of points remaining fell below three.

The regression line finally accepted represents the relationship between distance and photographic frame in the vicinity of the frame under investigation. The distance corresponding to the frame was obtained directly from the relationship. Speed was calculated from

Speed $=$ Slope \times Time constant
where: \quad Slope $=$ slope of regression line (ft/frame)

$$
\text { Time constant }=\text { filming rate }\left(\frac{\text { frames }}{\mathrm{sec}}\right) \times \frac{15}{22} \quad\left(\frac{\mathrm{mph}}{\mathrm{ft} / \mathrm{sec}}\right)
$$

The final result was a tabulation of speed vs. distance for the photographed vehicle.

The above calculation technique was used successfully for the overtaking traffic (which was filmed at 50 frames/min). When applied to the oncoming traffic, however, it gave erratic speed results. The oncoming traffic was filmed at 300 frames/min so that the change in relative distance from frame to frame was approximately the same as for the overtaking traffic. However, the time between frames was only $1 / 5 \mathrm{sec}$ compared to $6 / 5 \mathrm{sec}$ for the overtakers. If relative speed is viewed as

$$
\begin{equation*}
\text { Relative speed }=\frac{\Delta S}{\Delta t} \tag{D-5}
\end{equation*}
$$

where: $\quad \Delta S=$ change in relative distance between frames
$\Delta t=$ time elapsed between frames
it can be seen that if inaccuracies in the determination of ΔS are the same for overtaking and oncoming traffic, the resultant inaccuracy in estimated relative speed will be larger for the oncomers. Moreover, the true speed of oncomers is further subject to error since it is but a fraction of the relative speed; overtaker true speed is the sum of the relative speed and the (large) wide load speed. This is discussed subsequently.

The calculation procedure was modified for the oncoming traffic. A distance for each frame was obtained using the regression technique described above except that nine frames were used instead of five. The distances, so obtained for each frame, were smoothed by forming running averages of five frames.* Differences of the smoothed distances were taken and also smoothed by forming five-frame running averages. Speed was then calculated from:

$$
\begin{equation*}
\text { Speed }=\frac{15}{22} \frac{\Delta S}{\Delta t} \tag{D-6}
\end{equation*}
$$

where: $\quad \Delta S=$ smoothed distance difference (ft)

$$
\begin{aligned}
& \Delta t=\text { time between frames }(\mathrm{sec}) \\
& \frac{15}{22}=\text { conversion factor, } \mathrm{ft} / \mathrm{sec} \text { to } \mathrm{mph}
\end{aligned}
$$

The successive smoothing procedure was arrived at empirically. It assumes that large speed changes do not occur in the one-second intervals implicit in the five-frame smoothing technique.

We have been discussing relative distance and relative speed; now it is necessary to describe the calculation of absolute speed. Considering first the overtaking traffic it was noted earlier that the speed of the vehicle carrying the camera (the "camera speed") was recorded at 15 sec intervals while filming. These recorded speeds were included as part of the

* Let $s_{1}, s_{2}, s_{3}, s_{4}$, and s_{5} be the distances caiculated (by regression) for frames one through five. The smoothed distance for an interior frame, say frame three, is:

$$
s_{3}(\text { smoothed })=\frac{1}{5}\left(s_{1}+s_{2}+s_{3}+s_{4}+s_{5}\right)
$$

Frames near the ends of the sequence were smoothed using:

$$
\begin{aligned}
& s_{2}=\frac{1}{4}\left(s_{1}+s_{2}+s_{3}+s_{4}\right) \\
& s_{1}=\frac{1}{3}\left(s_{1}+s_{2}+s_{3}\right)
\end{aligned}
$$

input data, specifying the speed at the initial frame and subsequent frames corresponding to 15 sec intervals. Changes in speed were assumed to occur at a uniform rate so the speed at any frame was easily calculated. Absolute speed was obtained from:

$$
\text { Absolute speed = relative speed }+ \text { camera speed }
$$

In the case of oncoming traffic the camera speed was recorded at the beginning and end of a photographic sequence. The sequences were usually less than 4 sec long (20 frames) and the camera speed changes were small. Therefore, we used the average of the initial and final speed and obtained absolute speed from:

Absolute speed $=$ relative speed - average camera speed

APPENDIX E

FORMULATION OF COSTS TO OTHER TRAFFIC

The formulations used for computing costs to other traffic are presented in this appendix. The cost-incurring traffic situations are considered one at a time. Dollar costs are formulated first, followed by pollutant emission.

Traveling in queue: Vehicles traveling in queue at a speed different from their desired free speed incur costs associated with fuel consumption, tire wear and delay time. These three costs identified, respectively, as G_{Q}, T_{Q}, and D_{Q} are formulated using Eqs. 3, 10, 14, and 15.*

$$
\begin{align*}
& G_{Q}=\sum_{i=1}^{3}\left(f_{v}-f_{V_{i}}\right) \frac{q_{i}}{60} \frac{v c_{i}}{M} \tag{E-1}\\
& T_{Q}=\sum_{i=1}^{3}\left(W_{v}-W_{V_{i}}\right) \frac{q_{i}}{60} \frac{v}{M} \tag{E-2}\\
& D_{Q}=\sum_{i=1}^{3}\left(1-v / V_{i}\right) \frac{q_{i}}{60} \frac{H_{i}}{M} \tag{E-3}
\end{align*}
$$

where: $\quad f_{v}$ and f_{i} are given by Eqs. 4,5 , and 6
W_{v} and $W_{V_{i}}$ are given by Figures 15,16 , and $17 \% \%$
$v=$ average speed of wide load
$V_{i}=$ desired free speed of i^{\prime} th vehicle class
$q_{i}=$ minutes of queuing by vehicles in i^{\prime} th class during this time period

[^7]```
Hi}=cost of time for i'th vehicle class (Eq. 15)
ci
 vehicles and 34¢ for trucks
M = miles traveled by wide load during this time period
i = vehicle class index
 1 = passenger
 2 = pickup
 3 = truck
```

It can be seen that gasoline, tire and delay time costs are obtained by summing over the three vehicle classes distinguished in the cost analysis.

Unimpeded overtaking and passing: Vehicles performing unimpeded overtaking and passing may change speed and/or lane and thereby incur associated costs. The fuel consumption cost is formulated using Eqs. 3, 7, 8 and 9:

$$
\begin{equation*}
G_{F P}=\sum_{i=1}^{3}\left[\left(f_{\bar{v}_{i}}-f_{V_{i}}\right) N_{F P i} \frac{L_{F P i}}{\bar{v}_{i}-v_{i}} \frac{\bar{v}_{i} c_{i}}{M}+g_{i}\left(v_{i}, \bar{v}_{i}\right) N_{F P i} \frac{c_{i}}{M}\right] \tag{E-4}
\end{equation*}
$$

where: $\quad \mathrm{f}_{\bar{v}_{i}}$ and $\mathrm{f}_{\mathrm{V}_{\mathrm{i}}}$ are given in Eqs. 4,5 and 6

$$
\begin{aligned}
& N_{\text {FPi }}=\text { number of unimpeded passes made by } i^{\prime} \text { th class } \\
& \text { vehicles during this time period }
\end{aligned}
$$

The other quantities are as previously defined. Notice that $G_{F P}$ is made up of two parts, one due to traveling at a speed different from the desired speed and the other die to the speed change cycle per se.

The tire cost resulting from unimpeded speed changing is formulated using Eq. 10:
$T_{F P}=\sum_{i=1}^{3}\left[\left(W_{\bar{v}_{i}}-W_{V_{i}}\right) \frac{\bar{v}}{M} N_{F P i} \frac{L_{F P i}}{\bar{v}_{i}-v}+W_{\Delta i}\left(\left|V_{i}-\bar{v}_{i}\right|\right) \frac{N_{F P i}}{M}+2 \frac{F_{1 i}}{M} N_{F P i} C_{L C i}\right]$ (E-5)
where: $\quad W_{\bar{v}_{i}}$ and $W_{V_{i}}$ are given by Figures 15,16 , and 17

$$
\begin{aligned}
\mathrm{W}_{\Delta i}\left(\left|\mathrm{~V}_{\mathrm{i}}-\overline{\mathrm{v}}_{\mathrm{i}}\right|\right)= & \text { cost of speed change } \\
\mathrm{F}_{1 i}= & \begin{array}{r}
\text { fraction of unimpeded } i^{\prime} \text { th vehicle class passes } \\
\text { made out of lane } 1
\end{array} \\
\mathrm{C}_{\mathrm{LCi}}= & \begin{aligned}
& \text { tire wear costs due to lane changing, from Figures } \\
& 18 \text { and } 19 *
\end{aligned}
\end{aligned}
$$

The cost $T_{F P}$ is made up of three parts, one due to traveling at a speed different from desired speed, one due to the speed change cycle per se and one due to lane changing.

The delay time cost of unimpeded passing is £ormulated from Eqs. 14 and 15:

$$
\begin{equation*}
D_{F P}=\sum_{i=1}^{3}\left(1-\bar{v}_{i} / V_{i}\right) \frac{H_{i}}{M} N_{F P i} \frac{L_{F P i}}{\bar{v}_{i}-v} \tag{E-6}
\end{equation*}
$$

where all quantities are previously defined.**

[^8]E-4

Passing from queue: Vehicles passing from queue incur fucl and tire costs resulting from speed changing and lane changing. The time delay costs are negligible compared to delay costs while in queue and are therefore omitted. The fuel consumption cost is formulated from Eqs. 7, 8 and 9:

$$
\begin{equation*}
\mathrm{G}_{\mathrm{QP}}=\sum_{i=1}^{3} \mathrm{~g}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}\right) \frac{\mathrm{c}_{i}}{\mathrm{M}} \mathrm{~N}_{\mathrm{QPi}} \tag{E-7}
\end{equation*}
$$

where: $\quad \mathrm{N}_{\mathrm{QPi}}=$ number of passes made from queue by $\mathrm{i}^{\prime}$ th class vehicles during this time period.

All other quantities are previously defined. Note that GQP consists of just the fuel cost of speed changing.

The time cost of passes made from queue is

$$
\begin{equation*}
T_{Q P}=\sum_{i=1}^{3}\left[W_{\Delta i}\left(\left|V_{i}-v\right|\right) \frac{N_{Q P i}}{M}+\frac{2 N_{Q P i}}{M} C_{L C i}\right] \tag{E-8}
\end{equation*}
$$

where all quantities are previously defined. $T_{Q P}$ is made up of two parts, one due to speed changing and one to lane changing.

Mecting from the front (oncomers): Vehicles meeting the wide load from the front may temporarily change speed and thereby incur associated costs. The fuel cost for oncomers is formulated using Eqs. 3, 7, 8 and 9:
$G_{0}=\sum_{i=1}^{3}\left[\left(f_{v_{\dot{*}}}-f_{V_{i}}\right) \frac{v_{\dot{*}_{i}} c_{i}}{M} N_{O i} \frac{L_{O i}}{v_{*_{\dot{\prime}}+v}}+g_{i}\left(V_{i}, V_{*_{\dot{i}}}\right) \frac{c_{i}}{M} N_{0 i}\right]$
where: $\quad f_{v_{*_{i}}}$ and $f_{V_{i}}$ are given by Eqs. 4,5 and 6
$N_{0 i}=$ number of oncomers in $i^{\prime}$ th vehicle class this
time period
$v_{* i}=$ average speed traveled by $i^{\prime}$ th class vehicles while meeting the wide load

$$
\begin{aligned}
\mathrm{L}_{0 i}= & \text { distance traveled relative to the wide load } \\
& \text { at speed } \mathrm{v}_{*_{i}} \text {. }
\end{aligned}
$$

All other quantities are previously defined. The fuel cost $G_{0}$ is composed of two parts, one due to traveling at a speed different from desired speed and the other due to the speed changing per se.

Tire costs for oncomers are formulated using Eq. 10:

$$
\begin{equation*}
T_{0}=\sum_{i=1}^{3}\left[\left(W_{v_{*_{i}}}-W_{V_{i}}\right) \frac{v_{\psi_{i}}}{M} N_{0 i} \frac{L_{0 i}}{v_{*_{i}}+v}+W_{\Delta i}\left(\left|v_{i}-v_{*_{i}}\right|\right) \frac{N_{0 i}}{M}\right] \tag{E-10}
\end{equation*}
$$

where all quantities are previously defined. The tire cost $\mathrm{T}_{0}$ is composed of two parts, one due to traveling at a speed different from the desired speed and one due to the speed changing per se.

The time delay cost for oncomers is formulated from Eqs.
14 and 15:

$$
\begin{equation*}
D_{0}=\sum_{i=1}^{3}\left(1-v_{* i} / V_{i}\right) \frac{H_{i}}{M} N_{0 i} \frac{L_{0 i}}{v+v_{* i}} \tag{E-11}
\end{equation*}
$$

where all quantities are previously defined.
Pollutant emission: Only one formulation of pollutant emission is given; it includes the contributions of all four of the traffic situations. It was not necessary to subdivide it further because the effect of each situation can be seen in the one formulation. Use is made of Eqs. 16 and 17 and Figures 20a and 20b. (The curves in Figures 20a and 20b were curve fitted to facilitate programming.)

The carbon monoxide emission attributable to the traffic disturbances induced by the wide load is:

$$
\begin{align*}
E_{c o} & =\sum_{i=1}^{3} \frac{F_{i}}{M}\left\{\left[e_{c o}(v)-e_{c o}\left(v_{i}\right)\right] \frac{q_{i}}{60}+\left[e_{c o}\left(\bar{v}_{i}\right)-e_{c o}\left(v_{i}\right)\right] \bar{v}_{i} N_{F P i} \frac{L_{F P i}}{\bar{v}_{i}-v}\right. \\
& +\left[e_{c o}\left(v_{*_{i}}\right)-e_{c o}\left(v_{i}\right)\right] v_{*_{i}} N_{O i} \frac{L_{0 i}}{v_{*_{i}}+v} \\
& +19.5 \times 10^{-6}\left[\left(v+v_{i}\right)\left(\left|v_{i}-v\right|\right) N_{Q P i}+\left(\bar{v}_{i}+v_{i}\right)\left(\left|v_{i}-\bar{v}_{i}\right|\right) N_{F P i}\right. \\
& \left.\left.+\left(v_{*_{i}}+v_{i}\right)\left(\left|v_{i}-v_{*_{i}}\right|\right) N_{O i}\right]\right\} \tag{E-12}
\end{align*}
$$

E-6
where: $\quad e_{c o}$ is obtained from curve fits of Figure 20a

$$
\begin{aligned}
F_{i} & =2.1 \text { for } i=1 \text { and } 2 \text { (passenger and pickup) } \\
& =1.63 \text { for } i=3 \text { (truck) }
\end{aligned}
$$

and all other quantities are previously defined.
The hydrocarbon emission attributable to the traffic disturbances induced by the wide load is:

$$
\begin{align*}
E_{H C} & =\sum_{i=1}^{3} \frac{F_{i}}{M}\left\{-e_{H C}(v)-e_{H C}\left(v_{i}\right)\right] v \frac{q_{i}}{60}+\left[e_{H C}\left(\bar{v}_{i}\right)-e_{H C}\left(v_{i}\right)\right] \bar{v}_{i} N_{F P i} \frac{L_{F P i}}{\bar{v}_{i}-v} \\
& +\left[e_{H C}\left(v_{*_{i}}\right)-e_{H C}\left(v_{i}\right)\right] \mathrm{v}_{\digamma_{i}} \quad N_{O i} \frac{L_{O i}}{v_{*_{i}}+v} \\
& +\left\{\left[-8+0.2\left(v+v_{i}\right)\right]\left(\left|v_{i}-v\right|\right) N_{Q P i}+\left[-8+0.2\left(\bar{v}_{i}+V_{i}\right)\right]\left(\left|v_{i}-\bar{v}_{i}\right|\right) N_{F P i}\right. \\
& \left.\left.+\left[-8+0.2\left(v_{*_{i}}+v_{i}\right)\right]\left(\left|v_{i}-v_{*_{i}}\right|\right) N_{O i}\right\} \times 10^{-6}\right\} \tag{E-13}
\end{align*}
$$

where: $\quad e_{H C}$ is obtained from curve fits of Figure $20 b$ and all other quantities are previously defined.

## APPENDIX F

The motorist interview consists of two parts, A and B. Part A is a personal interview at the scene, in which you ask questions and record answers. Part B consists of supplemental questions which the respondent is asked to answer and return by mail.

The personal interview questicrs should be asked verbatim as worded in the attached sheet. Please memorize these questions and stick to that wording as much as possible. The answers are to be recorded on another sheet which is designed to accommodate the answers to 10 interviews plus allow space to note other kinds of information.

In introducing the interview, it is suggested you use the approximate wording on the attached sheet, "Good Morning! We are conducting a brief traffic survey for the Federal Highway Administration; could you tell me---." While saying this, you should display the "traffic survey" sign which should be taped to the bottom of your clipboard. You should then launch directly into the first question from there.

Normally, the respondent will not question you. However, if he asks for more information about who you are or why we are doing the survey, tell him who you are. Feel free to explain that you work for Midwest Research Institute, Kansas City, Missouri, which is under contract with the Federal Highway Administration to do this survey. If necessary, explain that the survey deals with traffic and traffic safety. Do not, under any circumstances say that the survey has to do with wide loads or mobile homes or anything of this nature. To do so would invalidate the answers to the questions.

The answers to the questions can normally be recorded as check marks on the answer form. The answers from the first respondent should be placed on line 0 . (Note that line 0 , as well as every other line, is repeated on the form for the second half of the questions.) The numbering starts with 0 for ease of subsequent data analysis and cross referencing.

The first questions should be self-explanatory. The second question may cause difficulties in interpretation, which you must work out as best as possible. If the respondent says "about $1 \mathrm{hr"} \mathrm{encode} \mathrm{this} \mathrm{as} 1$ to 3 hr . If, as will often happen, the respondent says he has been driving since he left such and such a town, or since he got off work, or whatever, try as best you can to determine about how long ago that was. Do not, however, make a big issue out of it. Do the best you can quickly and move on to the next question.

On Question 3, answers such as "about 10,000 miles" should be encoded in the $10-20,000$ mile category. In Question 4 , if the respondent is uncertain and says that he drives about equal amounts for business and for
nonbusiness, check both answers. Question 5 is the only question in which you tell the respondent what the possible answers are. If he says "all three" or something similar, ask him again which he drives most often. If he still is uncertain, then check all answers which apply. In Question 6, if the answer is no, simply skip directly to Question 7. If the answer is yes, then ask Question 6 a and, if appropriate, 6 b . Interpret the response as one of the four possible categories, but if it does not fit any of these four, write in, under other, what the response was. Use the remarks section of the recording form if more space is needed.

Questions 7 and 9 should be treated similarly to Question 6. Question 9c, which you will probably ask only occasionally, again will require interpreting the answer as one of four possibilities, if possible.

After asking Question 9, conclude the interview and ask them to complete the Part $B$ form using wording as you feel appropriate. The attached sheet gives a suggestion.

If a motorist declines to take part in the survey after your initial remarks, then ask him once more, using different wording. For example, you might say that his answers are very important to the survey and that we would really appreciate his help. It will only take about 2 min . If he still refuses, then thank him anyway and let him go; do not argue. Throughout all of the interviews be friendly, with a smile, and be open and interested in your subject. Refrain, however, from getting into lengthy discussions, etc. While being friendly, also maintain a businesslike attitude, trying to convey the impression that: (a) you would like to detain the motorist as little as possible; and (b) you have work to do.

After the interview has been concluded and the driver pulls away, then complete the section of the answer form pertaining to observations. The sex should be noted as well as the approximate age. The coding on age is by decade, that is, 3 stands for $30^{\prime} \mathrm{s}, 4$ for $40^{\prime} \mathrm{s}$, etc. The vehicle type should also be noted. Most automobiles would be checked as car. The code, VW, will include any vehicles which you believe to be underpowered and, perhaps, handicapped at accelerating to pass a wide load at a very high speed. The pick-up category includes campers and the like. Commercial vehicles should be classified as semi's or trucks. Trucks include anything bigger than a pickup or a panel but which is a single unit. Finally, indicate the time using military time at which the interview began. Try to note this to the nearest minute.

And now a word about coding. Each interview will carry a fourpart code. This code consists of the month, day and page number which appear at the upper left of the Part A interview recording form, plus the line
number on that form. This same four-part code should be written at the top of the Part B form which is handed to the motorist. The code should be written on Part B prior to the interview, not in the presence of the motorist. The purpose of the code is to allow subsequent cross checking of the responses. It is suggested that on each day the page numbers begin with 1 and increase consecutively. It is also suggested that, when there are two interviewers, one interviewer use even page numbers and the other use odd page numbers to prevent duplicate numbering. (In the event that two interviewing teams are in the field on the same day, we will make special arrangements to coordinate page numbering between the two teams.)

In case the motorist asks, all interviews are considered confidential and anonymous. We do not record anybody's name, drivers license or vehicle license number, or other identifying information. If the driver asks about the code number, explain that this is simply a code identifying the date and location of the interview, for our future records.

At the top of the personal interview recording form, certain other information is requested. Most of this should be self-explanatory. The category, approximate location, should be as precise as possible. For example, it might say "E. B. 1 mile E. Twin Falls." The type of roadway should be that which typifies the road that the motorists have most recently been driving upon (normally this will be the same as where you are interviewing but could differ in special circumstances). Likewise, the other information requested regarding description of the highwav should apply to that which the motorist has recently experienced. The vehicle count can be obtained by one of the flagmen. It is not necessary to count for a full hour. For example, a 15 -min count could be taken which is then multiplied by four. Likewise, three or four 5 -min counts could be taken and multiplied by the appropriate factor. Since traffic volumes vary from hour to hour, a separate count should be taken each hour.

The other key type of information needed during the survey is the passage of mobile and modular homes. It is extremely important that no such vehicle pass by unnoticed. It is suggested that one of the flagmen or the flagmen supervisor be asked to monitor this if possible. Otherwise, the interviewers must coordinate their interviewing so that at no time are both interviewers talking with motorists at the same time (talking with the motorist should normally require one's undivided attention).

When a wide load passes, certain information should be recorded on the wide-load log. First of all, the time to the nearest minute should be noted. (Obviously, all watches need to be synchronized.) It should also be noted whether the direction of passage is the same as that of the motorists being interviewed or in the opposite direction (the one exception is
for wide loads traveling in the opposite direction on divided highways, these movements do not need to be noted on the log).

The type of wide load should be noted. Normally, these will be mobile homes. You may see a modular unit which should be recognizable because it will be mounted on a special trailer which will normally have a fifth wheel or pindle hook type hitch rather than a ball and socket hitch. You may also note other types of oversized loads such as farm equipment, etc. If it is a mobile home try to identify it as a half-house or, if a complete unit, by width. You can often determine the width by noting its size relative to the width of the lane which is normally 12 ft . If you are unsure of the width, put a check mark in the column headed by a question mark.

The presence of escorts, if any, should be noted. Also, we are very interested in noting whether any flashing lights are used in the shipment. These could be mounted on either escort vehicle, on the top of the cab of the tractor, or on the back of the house. We are not including steadily burning "running lights" in this category.

The site selection should be done mutually with the highway department involved. Sites should be on roads which carry relatively high volumes of mobile homes. Our preliminary experience indicates that you should not be interviewing traffic which is close to, or leaving a major city. The reason for this is that most of these motorists have just started their trips so have not yet had much opportunity to have passed a wide load. It would be better to get 1 or 2 hr out of town, or to interview traffic entering town. Local situations will dictate whether the mobile home traffic will be heaviest leaving town or entering town, and whether this situation changes during the course of the day. Often times mobile home traffic will be heaviest leaving town in the morning and entering town in the afternoon. This should be pursued with the cognizant state permit authorities.

The techniques of traffic control should be left up to the state highway people. Normally, we will try to have them provide signing, cones, flagmen or whatever else is their normal practice. Likewise, it would be well to determine if the state highway patrol should be alerted and how that should be done.

The interviewing should probably be carried out for 5 or 6 hr during the day. For example, you might wish to work from 9:00 until 4:00 with an hour out for break. Again, talk to the state highway people about this.

It is suggested that the two interviewers alternate cars. You will find that it will take approximately 2 min , on the average, to interview the motorist; then you will need a little additional time to complete writing up your notes and to get yourself organized for the next motorist. Therefore, you should work out some sort of signal arrangement to be used with the flagmen so that they will know when to stop another motorist for interviewing.

Finally, a word about safety. You must, at all times, keep in mind that motorists can do crazy things. The people you are interviewing have probably been driving at 70 mph and may, for example, underestimate stopping distance and the like. Therefore, be on your toes and keep out of the way of traffic.

## APPENDIX G

MOTORIST OPINION AND ATTITUDE DATA AND ANALYSES

1. Data: The responses from the motorists are tabulated in Tables $G-1$ and G-2. The first table contains the responses from the 1,097 motorists interviewed on divided highways and the second from the 1,855 two-lane highway drivers.
2. Method of analysis: Chi-square analyses were used to test a large number of relationships for statistical significance. Where necessary, grouping of close levels of responses was performed to assure large enough sample sizes, (e.g., "young" drivers might correspond to the group whose ages were in their teens or in their twenties.)

In the discussions in the rest of this appendix, the nature of the comparisons being made must be clearly understood. One group of drivers is always being compared with another group--comparisons are not between responses of the same group. Thus, a hypothetical statement such as "middle aged drivers were more likely to be driving trucks" must be interpreted as "middle aged drivers were more likely to be driving trucks than were young or elderly drivers," not "middle aged drivers were more likely to be driving trucks than cars, motorcycles, campers, etc."
3. Divided vs two-lane highway drivers: Chi-square tests were performed to determine if the responses of drivers stopped on two-lane highways were different from those of drivers stopped on divided highways. As shown in Table G-3, there were many differences in the drivers and in their opinions.

The two-lane drivers were more likely to be driving for business purposes, to drive more miles per year, and to do more of their driving on two-lane highways, than were divided highway drivers. They were less likely to recollect a delay during their trip than divided highway drivers, a surprising result. It may be, however, that as a group, they are more tolerant of delays than the group of divided highway drivers, so were less likely to have been concerned over any particular situation. Of the two-lane drivers who did recollect a delay, however, it often tended to be caused by a slow vehicle, whereas delay causes mentioned by divided highway drivers had a greater tendency to be accidents or construction.

There were also differences in the drivers' selections of problem vehicle types. Two-lane drivers were more likely to mention mobile homes and farm equipment whereas divided highway drivers tended to mention trucks, cars, and campers more frequently. Two-lane drivers were less likely to have recalled passing a mobile home because, in fact, they were less likely to have passed a mobile home; but of those who gave an affirmantive response, the two-lane drivers were more likely to state that it caused problems.

| Category | Number | Percent |
| :---: | :---: | :---: |
| Wide Load Ințerview |  |  |
| First Summary | 1097 |  |
| State | 1097 |  |
| Oregon | 209 | 19.05 |
| Idaho | 210 | 19.14 |
| Nebraska | 0 | 0.00 |
| Indiana | 150 | 13.67 |
| New Hampshire | 180 | 16.41 |
| Florida | 348 | 31.72 |
| Road Type | 1097 |  |
| Two Lane | 0 | 0.00 |
| Divided Not Interstate | 80 | 7.29 |
| Interstate | 1017 | 92.71 |
| Lane Width | 1097 |  |
| Under 10 ft | 0 | 0.00 |
| 10 ft | 0 | 0.00 |
| 11 ft | 0 | 0.00 |
| 12 ft | 887 | 80.86 |
| Over 12 ft | 210 | 19.14 |
| Shoulders | 1097 |  |
| Paved | 1017 | 92.71 |
| Unpaved | 80 | 7.29 |
| None | 0 | 0.00 |
| Speed Limit | 1097 |  |
| 70 or Over | 1097 | 100.00 |
| 65 | 0 | 0.00 |
| 60 | 0 | 0.00 |
| 55 | 0 | 0.00 |
| 50 | 0 | 0.00 |
| 45 | 0 | 0.00 |
| 40 or Under | 0 | 0.00 |


| Category | Number | Percent |
| :---: | :---: | :---: |
| Vehicles/Hour | 1097 |  |
| 2000 and Over | 0 | 0.00 |
| 1500-1999 | 0 | 0.00 |
| 1000-1499 | 0 | 0.00 |
| 800-999 | 0 | 0.00 |
| 600-799 | 120 | 10.94 |
| 400-599 | 220 | 20.05 |
| 200-399 | 717 | 65.36 |
| 100-199 | 40 | 3.65 |
| Under 100 | 0 | 0.00 |
| Trip Purpose | 1094 |  |
| Business | 355 | 32.45 |
| Nonbusiness | 716 | 65.45 |
| Both | 23 | 2.10 |
| Miles Per Year | 1086 |  |
| Under 1,000 | 12 | 1.10 |
| 1,000 to 3,000 | 34 | 3.13 |
| 3,000 to 10,000 | 209 | 19.24 |
| 10,000 to 20,000 | 403 | 37. 11 |
| Over 20,000 | 428 | 39.41 |
| Usual Purpose Driving | 1084 |  |
| Business | 454 | 41.88 |
| Nonbusiness | 553 | 51.01 |
| Both | 77 | 7.10 |
| Usual Type Roads | 1080 |  |
| Local Streets (A) | 170 | 15.74 |
| 2-Lane Rural Highway (B) | 194 | 17.96 |
| Combination of A-B | 24 | 2.22 |
| High-Speed Freeways (C) | 506 | 46.85 |
| Combination of A-C | 28 | 2.59 |
| Combination of B-C | 107 | 9.91 |
| Combination of $\mathrm{A}-\mathrm{B}-\mathrm{C}$ | 51 | 4.72 |
| Been Delayed Today | 1089 |  |
| Yes | 302 | 27.73 |
| No | 786 | 72.18 |


| Category | Number | Percent |
| :---: | :---: | :---: |
| What Delayed You | 296 |  |
| Accident | 32 | 10.81 |
| Traffic Congestion | 7 | 2.36 |
| Slow-Moving Vehicle | 25 | 8.45 |
| Construction | 199 | 67.23 |
| Other | 32 | 10.81 |
| What Type Slow Vehicle | 27 |  |
| Truck | 10 | 37.04 |
| Mobile Home | 9 | 33.33 |
| Bus | 0 | 0.00 |
| Car | 1 | 3.70 |
| Tractor, Farm Equipment | 3 | 11.11 |
| Camper, Trailer | 3 | 11.11 |
| Motorcycle | 0 | 0.00 |
| Other | 1 | 3.70 |
| Seen Safety Hazard Today | 1088 |  |
| Yes | 169 | 15.53 |
| No | 919 | 84.47 |
| What Hazard Did You See | 163 |  |
| Accident | 4 | 2.45 |
| Traffic Congestion | 6 | 3.68 |
| Slow-Moving Vehicle | 46 | 28.22 |
| Construction | 20 | 12.27 |
| Other (except road) | 28 | 17.18 |
| Factor Related to Road | 59 | 36.20 |
| What Type Slow Vehicle | 44 |  |
| Truck | 27 | 61.36 |
| Mobile Home | 1 | 2.27 |
| Bus | 1 | 2.27 |
| Car | 7 | 15.91 |
| Tractor, Farm Equipment | 4 | 9.09 |
| Camper, Trailer | 3 | 6.82 |
| Motorcycle | 0 | 0.00 |
| Other | 1 | 2.27 |


| Category | Number | Percent |
| :---: | :---: | :---: |
| What Types are Problems | 592 |  |
| Truck | 194 | 32.77 |
| Mobile Home | 58 | 9.80 |
| Bus | 7 | 1.18 |
| Car | 113 | 19.09 |
| Tractor, Farm Equipment | 12 | 2.03 |
| Camper, Trailer | 146 | 24.66 |
| Motorcycle | 7 | 1.18 |
| Other | 55 | 9.29 |
| None | 494 |  |
| Notice Any Wide Loads | 1088 |  |
| Yes | 622 | 57.17 |
| No | 463 | 42.56 |
| Yes (not mobile home) | 3 | 0.28 |
| Was It Going Your Way | 616 |  |
| Yes | 383 | 62.18 |
| No | 232 | 37.66 |
| Did It Cause Problems | 530 |  |
| Yes | 46 | 8.68 |
| No | 484 | 91.32 |
| Why Did it Cause Problem | 38 |  |
| Hard To See Around | 2 | 5.26 |
| Moving Too Slowly | 14 | 36.84 |
| Could Not Pass | 13 | 34.21 |
| Taking Two Lanes | 6 | 15.79 |
| Other | 3 | 7.89 |
| Sex | 1076 |  |
| Male | 903 | 83.92 |
| Female | 172 | 15.99 |
| Age | 1064 |  |
| Under 20 | 34 | 3.20 |
| 20-29 | 194 | 18.23 |
| 30-39 | 212 | 19.92 |
| 40-49 | 248 | 23.31 |
| 50-59 | 233 | 21.90 |
| 60 and Over | 143 | 13.44 |


| Category | Number | Percent |
| :--- | ---: | ---: |
| Vehicle Type |  |  |
| Car | 1040 |  |
| VW | 736 | 70.77 |
| Pick-up | 69 | 6.63 |
| Truck | 131 | 12.60 |
| Semi | 38 | 3.65 |
|  | 66 | 6.35 |
| Passed Wide Load When | 591 |  |
| 30 min | 253 | 42.81 |
| 1 hr | 190 | 32.15 |
| 3 hr | 138 | 23.35 |
| Over 3 hr | 10 | 1.69 |




$$
\stackrel{\text { H. }}{\substack{4}} \vdots \stackrel{0}{\sim} \underset{\sim}{\infty}
$$

$$
\circ \quad 0 \quad 0 \quad 0
$$

$$
\sim \sim 00
$$

$$
\stackrel{\sim}{\sim} \simeq \sim
$$

$$
\begin{gathered}
\text { SLOW } \\
\text { VEHICLES }
\end{gathered}
$$



TABLE G-1 (Continued)

| CHOICE | WHICH VEH. SHOULD BE BANNED ON INTERSTATE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { PASSENG ER } \\ \text { CARS } \end{gathered}$ | SPORTS CARS | CAMPERS | $\begin{aligned} & \text { SINGLE-UNIT } \\ & \text { TRUCKS } \end{aligned}$ | MOBILE HOMES |
| 1 | ${ }^{\prime}$ | 1 | 5 | 7 | 26 |
| 2 | 0 | 1 | 1 | 1 | 4 |
| 3 | U | " | 0 | 0 | $\checkmark$ |
| total | \% | 0 | 6 | 8 | 32 |
|  | WHICH V BANNED | EH. SHO ON TWO | $\begin{aligned} & \text { LD BE } \\ & \text { ANE } \end{aligned}$ |  |  |




## Category <br> Number <br> Percent

Wide Load Interview
First Summary 1855

State 1855
Oregon 270

Nebraska 150
New Hampshire
Florida

Road Type
Two Lane
Divided, Not Interstate
Interstate

Lane Width 1855
Under 10 ft 150

Paved 662

Speed Limit
70 or Over
65
60
55
50
45
40 or Under

261
738

261
0
1308
136

1855

1193
0

1855
14.56
14.07
39.78
8.09
23.50
0.00
100.00
0.00
0.00
8.09
14. 07
0.00
70.51
7.33
35.69
64.31
0.00
0.00
39.78
20.54
16.17
23.50
0.00
0.00

| Category | Number | Percent |
| :---: | :---: | :---: |
| Vehicles/Hour | 1855 |  |
| 2000 and Over | 0 | 0.00 |
| 1500-1999 | 0 | 0.00 |
| 1000-1499 | 0 | 0.00 |
| 800-999 | 0 | 0.00 |
| 600-799 | 0 | 0.00 |
| 400-599 | 0 | 0.00 |
| 200-399 | 300 | 16.17 |
| 100-199 | 607 | 32.72 |
| Under 100 | 948 | 51.11 |
| Trip Purpose | 1855 |  |
| Business | 1003 | 54.07 |
| Nonbusiness | 822 | 44.31 |
| Both | 30 | 1.62 |
| Miles Per Year | 1838 |  |
| Under 1,000 | 22 | 1.20 |
| 1,000 to 3,000 | 83 | 4.52 |
| 3,000 to 10,000 | 362 | 19.70 |
| 10,000 to 20,000 | 583 | 31.72 |
| Over 20,000 | 788 | 42.87 |
| Usual Purpose Driving | 1851 |  |
| Business | 961 | 51.92 |
| Nonbusiness | 711 | 38.41 |
| Both | 177 | 9.56 |
| Usual Type Roads | 1843 |  |
| Local Streets (A) | 180 | 9.77 |
| 2-Lane Rural Highway (B) | 913 | 49.54 |
| Combination of $A-B$ | 89 | 4.83 |
| High-Speed Freeways (C) | 347 | 18.83 |
| Combination of A-C | 13 | 0.71 |
| Combination of B-C | 215 | 11.67 |
| Combination of $\mathrm{A}-\mathrm{B}-\mathrm{C}$ | 86 | 4.67 |
| Been Delayed Today | 1836 |  |
| Yes | 288 | 15.69 |
| No | 1543 | 84.04 |


| Category | Number | Percent |
| :---: | :---: | :---: |
| What Delayed You | 284 |  |
| Accident | 1 | 0.35 |
| Traffic Congestion | 14 | 4.93 |
| Slow-Moving Vehicle | 88 | 30.99 |
| Construction | 136 | 47.89 |
| Other | 43 | 15.14 |
| What Type Slow Vehicle | 90 |  |
| Truck | 40 | 44.44 |
| Mobile Home | 8 | 8.89 |
| Bus | 1 | 1.11 |
| Car | 13 | 14.44 |
| Tractor, Farm Equipment | 16 | 17.78 |
| Camper, Trailer | 9 | 10.00 |
| Motorcycle | 0 | 0.00 |
| Other | 3 | 3.33 |
| Seen Safety Hazard Today | 1851 |  |
| Yes | 304 | 16.42 |
| No | 1547 | 83.58 |
| What Hazard Did You See | 296 |  |
| Accident | 0 | 0.00 |
| Traffic Congestion | 4 | 1.35 |
| Slow-Moving Vehicle | 75 | 25.34 |
| Construction | 35 | 11.82 |
| Other (except road) | 59 | 19.93 |
| Factor Related to Road | 123 | 41.55 |
| What Type Slow Vehicle | 71 |  |
| Truck | 33 | 46.48 |
| Mobile Home | 4 | 5.63 |
| Bus | 0 | 0.00 |
| Car | 9 | 12.68 |
| Tractor, Farm Equipment | 18 | 25.35 |
| Camper, Trailer | 3 | 4.23 |
| Motorcycle | 1 | 1.41 |
| Other | 3 | 4.23 |


| Category | Number | Percent |
| :---: | :---: | :---: |
| What Types are Problems | 1056 |  |
| Truck | 297 | 28.13 |
| Mobile Home | 144 | 13.64 |
| Bus | 5 | 0.47 |
| Car | 129 | 12.22 |
| Tractor, Farm Equipment | 194 | 18.37 |
| Camper, Trailer | 179 | 16.95 |
| Motorcycle | 37 | 3.50 |
| Other | 71 | 6.72 |
| None | 794 |  |
| Notice Any Wide Loads | 1842 |  |
| Yes | 425 | 23.07 |
| No | 1390 | 75.46 |
| Yes (not mobile home) | 27 | 1.47 |
| Was it Going Your Way | 441 |  |
| Yes | 170 | 38.55 |
| No | 271 | 61.45 |
| Did it Cause Problems | 335 |  |
| Yes | 60 | 17.91 |
| No | 275 | 82.09 |
| Why Did it Cause Problem | 57 |  |
| Hard to See Around | 7 | 12.28 |
| Moving Too Slowly | 25 | 43.86 |
| Could Not Pass | 13 | 22.81 |
| Taking Two Lanes | 7 | 12.28 |
| Other | 5 | 8.77 |
| Sex | 1831 |  |
| Male | 1419 | 77.50 |
| Female | 410 | 22.39 |
| Age | 1800 |  |
| Under 20 | 66 | 3.67 |
| 20-29 | 349 | 19.39 |
| 30-39 | 400 | 22.22 |
| 40-49 | 453 | 25.17 |
| 50-59 | 350 | 19.44 |
| 60 and Over | 182 | 10.11 |

TABLE G-2 (Continued)

Category
Vehicle Type
Car
VW
Pick-up
Truck
Semi

Passed Wide Load When
30 min
1 hr
3 hr
Over 3 hr

Number

1754
1089
91
339
113
122

529
273
163
80
13

$$
\begin{array}{r}
62.09 \\
5.19 \\
19.33 \\
6.44 \\
6.96
\end{array}
$$

51.61
30.81
15.12
2.46



氙: N $\underset{H}{\sim}$ N $\vec{\infty}$
FARM
VEHICLES
MOTOR-
CYCLES
$\therefore n-2$
$\underset{\sim}{\sim} \sim N$


TABLE G-2 (Continued)


| uded |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHOICE | WHAT DO PASSENGER CARS | YOU OF <br> SPORTS CARS | TEN DRIVE <br> CAMPERS | E <br> SINGLE-UNIT TRUCKS | MOBILE HOMES | SEMIS | BUSES | TRAILERS | NONE | $\begin{aligned} & \text { SLOW } \\ & \text { VEHICLES } \end{aligned}$ | FARM VEHICLES | MOTORCYCLES | TOTAL |
| 1 | 42? | 3 | 4 | 1.3 | 1 | 10 | 3 | 7 | 13 | 0 | 1 | 1 | 478 |
| 2 | - 27 | 62 | 10 | no | 3 | 12 | 3 | 22 | 0 | 0 | 4 | 2 | 211 |
| 3 | 8 | 7 | 13 | 27 | 0 | 13 | 1 | 24 | 0 | 0 | 2 | 0 | 95. |
| TOTAL | 457 | 72 | 27 | 106 | 4 | 35 | 7 | 53 | 13 | 0 | 7 | 3 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| WHICH VEH. CAUSE PROBLEMS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CHOICE | PASSENGER CARS | SPORTS CARS | CAMPERS | SINGLE-UNIT TRUCKS | MOBILE <br> HOMES | SEMIS | BUSES | TRAILERS | NONE | $\begin{gathered} \text { SLOW } \\ \text { VEHICLES } \end{gathered}$ | $\begin{aligned} & \text { FARM } \\ & \text { VEHICLES } \end{aligned}$ | MOTORCYCLES | TOTAL |
|  |  |  | . . . . . . | $\cdots \cdot \bullet \cdot \bullet$ |  | .... . | . . . . . | . | . . | . . |  |  |  |
| 1 | 20 | 11 | 2.7 | 17 | 159 | 02 | 3 | 51 | 51 | 20 | 20 | 23 | 470 |
| 2 | 11 | n | 41 | 40 | 14 | 34 | - | 77 | 0 | 7 | 7 | 9 | 369 |
| 3 | 7 | 4 | 44 | 48 | 411 | 56 | $\bigcirc$ | 57 | 0 | 3 | 4 | 5 | 274 |
| TITAL | 44 | C1. ${ }^{\text {c }}$ | 112 | 105 | 273 | 201 | 11 | 185 | $5:$ | 30 | 31 | 37 |  |


| Question | Tendencics Relative to Other Drivers |  |  |
| :---: | :---: | :---: | :---: |
|  | Divided Highway $\qquad$ Drivers | Two-Lane Highway $\qquad$ | Level of Significance |
| Trip Purpose | Non-Business | Business | 0.005 |
| Annual Mileage | Moderate | High | 0.025 |
| Usual Trip Purpose | Non-Business | Business | 0.005 |
| Major Driving Experience | Local and Divided | Two-Lane | 0.005 |
| Any Delay? | Yes | No | 0.005 |
| Delay Cause | Accident or Construction | Slow Vehicles | 0.005 |
| Slow Vehicle Type | Mobile Home | --- | 0.05 |
| Any Safety Hazards? | --- | --- | N. S. |
| Hazard Cause | Accident or Traffic Congestion | --- | 0.10 |
| Slow Vehicle Type | --- | - | N. ${ }^{\text {S }}$ |
| General Problem Vehicle Type | Trucks, Cars and Campers | Mobile Homes and Farm Vehicles | 0.005 |
| Notice any Wide loads? | Yes | No | 0.005 |
| Cause Problems? | No | Yes | 0.005 |
| Why? | --- | --- | N. S. |
| Sex | Males | Females | 0.005 |
| Age | Older | Younger | 0.05 |
| Vehicle Type | Cars | Pickups and Single Unit Trucks | 0.005 |



The mail-back responses from divided highway drivers also were generally different from those of divided highway drivers. Regarding safety hazards and delays caused by other vehicles, two-lane drivers tended to be more tolerant. They were more likely than divided highway drivers to mention farm vehicles, as would be expected, as well as motorcycles. Divided highway drivers were more likely to consider mobile homes, trucks and trailers as being safety hazards and delay producers, both on divided highways and two-lane highways. There was a large difference between the driver groups regarding restrictions on vehicle types using the interstate system. Divided highway drivers were more likely to place mobile homes in this category whereas two-lane drivers were more likely to say that no vehicles should be restricted or that motorcycles should be restricted. There were no differences in the responses regarding limitations on two-lane highways. The same general type of differences were apparent regarding banning of vehicles on interstate and twolane highways.

Finally, according to the mail-back responses, the drivers' general feelings also differed in a similar fashion concerning problem vehicles, as indicated by their answers to the last question. Two-lane drivers tended more often to mention farm vehicles, motorcycles, and other cars, whereas divided highway drivers tended to mention campers and trailers more frequently.
4. Differences between states: Chi-square tests were performed on the responses of the drivers in the various states. Two sets of these analysis were conducted, one for divided highway drivers and the other for two-lane highway drivers. In every comparison made there were significant differences. The types of drivers and their opinions differed greatly from state to state. The detailed results of these comparisons are given in Tables G-4 and G-5 together with the major tendencies giving rise to the significance.
5. Driver stratifications: Approximately 450 cross tabulations of responses to the survey were prepared. The intent of these tabulations was to compare a number of characteristics of the respondents to their opinions and attitudes. Again, drivers interviewed on two-lane highways were analyzed separately from those stopped on divided highways.

The tabulations were examined and most were then subjected to chi-square analyses to determine the significance of the differences noted, if any. The conclusions from the majority of the chi-square analyses are summarized in Tables G-6 through G-9.
TABLE G-4
DIFFERENCES IN DIVIDED HIGHWAY DRIVERS, BY STATE
Level of
Significance
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.01
0.005

| DIFFERENCES IN DIVIDED HIGHWAY DRIVERS, BY STATE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Tendencies Relative to Drivers of Other States |  |  |  |  |
| Florida | Idaho | Indiana | New Hamsphire | Oregon |
| Nonbusiness | Business | Business | Business | Nonbusiness |
| Medium | Very Low or Very High | =- | -- | -- |
| Nonbusiness | Business | -- | =- | -- |
| Divided | Local | Divided | Mixed | Two Lane |
| Yes | No | Yes | -- | Yes |
| Misc. | Misc. | Construction | Construction | =- |
| -- | -- | Yes | - | -- |
| -- | -- | Slow Vehicles | - | - |
| Trucks | Campers or Trailers | Trucks | Small Vehicles | Campers or Trailers |

Question
Trip Purpose
Annual Mileage
Usual Trip
Purpose
Major Driving
Experience
Any Delay?
Delay Cause
Any Safety
Hazards?
Cause of
Safety Hazards
General
Problem Vehicle

| $\begin{array}{c}\text { Level of } \\ \text { Significance }\end{array}$ |
| :---: |
| 0.005 |
| 0.005 |
| 0.005 |
| 0.005 |
| 0.005 |



| Florida | Idaho | Indiana | New Hampshire | Oregon |
| :---: | :---: | :---: | :---: | :---: |
| Yes | No | -- | No | Yes |
| =- | =- | -- | =- | Yes |
| Males | -- | -- | Females | Females |
| 01d | Middle | Middle | - | Young |
| Cars | Trucks or Pickups | -- | -- | Pickups |

$$
\text { Question }
$$

Any Wide loads
Any Problems
Sex
Age
Vehicle
Type
Level of
Significance
0.005
0.01
0.005
0.005
0.005
0.025
0.05
0.025
0.025
$n$
8
0
0

| DIFFERENCES IN TWO-LANE HIGHWAY DRIVERS, BY STATETendencies Relative to Drivers of Other States |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| Idaho | Indiana | Nebraska | New Hampshire | Oregon |
| Nonbusiness | -- | Business | Nonbusiness | Nonbusiness |
| Low | High | High | Moderate | Low |
| -- | Business | Business | Nonbusiness | Nonbusiness |
| Two Lane | Divided | Two Lane | -- | Divided |
| - | Yes | Yes | No | -- |
| Slow Vehicles | Construction | Construction | -- | -- |
| -- | Yes | -- | No | -- |
| Misc. | -- | -- | Slow Vehicles | -- |
| Campers or Trailers | Mobile Homes or Cars | Mobile Homes or Farm Equip. | Trucks or Cars | Campers, Trailers or Cars |
| -- | Yes | -- | -- | -- |

Question
Trip Purpose
Annual Mileage
Usual Trip
Purpose
Major Driving
Experience
Any Delay?
Delay Cause
Any Safety
Hazards?
Causes of
Safety Hazards
General Prob.
Vehicle Type
Any Wide Loads

| $\begin{array}{c}\text { Level of } \\ \text { Significance }\end{array}$ |
| :---: |
| 0.01 |
| 0.01 |
| 0.005 |
| 0.005 |

TABLE G-5 (Concluded)

| Idaho | Indiana | Nebraska | New Hampshire | Oregon |
| :---: | :---: | :---: | :---: | :---: |
| No | Yes | =- | - - | No |
| - - | Males | Males | Females | -- |
| -- | =- | Middle | 01d | O1d |
| Pickups | Cars | Trucks | Cars | Pickups |

$\quad$ Question
Any Problems?
Sex
Age
Vehicle Type
P星

TABLE G-6
ANALYSIS OF ON-SITE, DIVIDED HIGHWAY INTERVIEWS*
Recall
passing
wide load?
0.005
0.05
0.025
0.025
0.05
0.025
N
$-$

Hazard
cause
N.S.
N.S.
0.025
N.S.
0.05
N.S.
N.S.
N.S.

| Safety |
| :--- |
| hazard |
| today? |

N.S.
N.S.
N.S.
N.S.
0.05
0.10
N.S.
0.10

 $\begin{aligned} & \text { Caused } \\ & \text { problem? }\end{aligned}$
N.S.
N.S.
N.S.
N.S.
N.S.
N.S.
NBS. Recall
passing
wide load?
0.10
0.01
N.S.
0.005
0.10
0.005
N.S. ANALYSIS OF ONSITE, TWO-LANE INTERVIEWS* Problem vehicle
type? 0.005 0.005
0.005

0.005 $\begin{array}{ll}-1 & \text { n } \\ 0 & 8 \\ 0 & 0\end{array}$ 0.005 0.05 $\therefore$ Entries are the levels of significance of the analysis; N.S. means not significant. | $\begin{array}{c}\text { Any } \\ \text { delay } \\ \text { today? }\end{array}$ |
| :--- |
| 0.005 . |
| 0.005 |
| 0.10 |
| N.S. |
| N.S. |
| 0.005 |
| 0.005 |
| 0.005 |

Safety
hazard
today?
hazard Hazard
cause
NoS.
NoS.
N.S.
NOS.
NOS.
0.05
NoS.
NoS.
NOS.
0.05
0.05
N.S.
0.05
N.S.

| 0 | $n$ | n | ㅇ |
| :--- | :--- | :--- | :--- |
|  | 0 | i | 0 |
| 0 | 0 | z | 0 |


| Delay |
| :--- |
| cause |

                N.S.
                    N.S.
    NoS.
NOS.
NoS.
N.S.
0.10
NoS.
N. S
Ne.
NoS.
NoS.
NoS.
NS.
0.05
* Entries are the levels of significance of the analysis; N.S. means not significant
Trip purpose
Annual mileage
Usual trip purpose
Major driving
experience
Vehicle type
Recall passing
wide load?
Recall passing
wide load?
Sex
Age
Vehi

TABLE G-8
ANALYSIS OF RETURNED QUESTIONNAIRES FROM DIVIDED HIGHWAY SITES*

|  | Hazard on Interstate | Hazard on TwoLane | Delay on Interstate | $\begin{gathered} \text { Delay } \\ \text { on Two- } \\ \text { Lane } \\ \hline \end{gathered}$ | Limited on Interstate | Limited on TwoLane | Banned on Interstate | Banned on TwoLane | Nost Problems, First Choice | Most Problems, Top <br> Three Choices |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Irip Purpose | N.S. | N. S. | N.S. |
| Annual Mileage | N.S. | N.S. | 0.005 | N.S. | N.S. | N.S. | N.S. | N.S. | 0.10 | N.S. |
| Usual Trip Purpose | N.S. | 0.10 | 0.01 | 0.05 | N.S. | N.S. | N.S. | 0.10 | N.S. | 0.005 |
| Major Driving Experience | N.S. | N.s. | 0.05 | N.S. | 0.05 | N.S. | N.S. | 0.05 | N.S. | N.S. |
| Sex | N.S. |
| Age | N.s. | N.s. | N.S. | N.S. | N.S. | N.S. | N. S. | N.S. | N.S. | N.s. |
| Vehicle Type | 0.005 | 0.005 | N.s. | N.S. | 0.025 | N.S. | N.S. | 0.05 | 0.005 | 0.005 |
| Recall Passing Wide Load? | N.s. | N.s. | N.s. | N.s. | N.S. | N.S. | 0.10 | N.S. | N.S. | N.S. |

Wost Prob-
lems, Top
Three Choices
N.S.
N.S.
N.S.
N.S.
0.10
N.S.
0.005
N.S.


ANALYSIS OF RETURNED QUESTIONNAIRES FROM TWO-LANE SITES*

| Hazard on TwoLane | Delay on Interstate | Delay on TwoLane | Limited on Interstate | Limited on TwoLane | Banned on Interstate |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N.S. | N.S. | 0.025 | N.S. | N.S. | 0.005 |
| N.S. | N.S. | 0.025 | N.S. | N.S. | 0.025 |
| 0.10 | N.S. | 0.025 | N.S. | N.S. | N.S. |
| N.S. | 0.005 | N.S. | 0.025 | N, S. | N.S. |
| N.s. | 0.005 | N.S. | N.S. | N.S. | N.S. |
| 0.10 | N.S. | N.S. | N.S. | N.S. | N.S. |
| 0.10 | 0.005 | 0.025 | N.S. | N.S. | N.S. |
| N.S. | N.S. | N.S. | N.S. | N.S. | N.S. |


Trip Purpose
Annual Mileage
Usual Trip
Purpose
Major Driving
Experience
Sex
Age
Vehicle Type
Recall Passing
Wide Load?

In many of the comparisons the stratifications were found to be not significant. However, where significant differences were observed, further explanation is required. Because of the bulk of information contained in these tables, it is necessary, unfortuantely, to discuss the significances one at a time.
a. On-site responses of divided highway drivers (Table G-6): Drivers on business trips were less likely to recall delay than those on nonbusiness trips. They were also less likely to recall having passed a wide load. However, of the drivers who did recall passing a wide load, those driving for business purposes were more likely to have encountered problems with respect to it. In general these drivers were more likely to name mobile homes, other cars, and campers as problem vehicles; whereas drivers on nonbusiness trips were more likely to mention trucks as problem vehicles or to say there were no particular types of vehicles which caused problems.

Low mileage drivers were more likely to consider trucks as problem vehicles whereas high mileage drivers considered other cars and campers in this category. The high mileage drivers were also less likely to have recalled a wide load on this trip than drivers who drove more moderate amounts.

People whose driving is usually for business purposes were usually the same people whose present trip was for business purposes. Therefore, the stratifications according to the usual trip purpose were much like the stratifications for the present trip purpose. In addition, drivers who usually travel on business were more likely to classify accidents, congestion and construction projects as safety hazards whereas other drivers were more likely to consider slow vehicles as hazardous.

Divided highway drivers who usually drive on divided highways were less likely to consider slow vehicles as causing delays. However, they tended to consider mobile homes and campers as problem vehicles more than did other drivers. Persons whose major driving is done on two-lane highways or local streets were more likely to state that no particular type of vehicle was a problem. Drivers accustomed to local streets were more likely to recall passing a wide load than those accustomed to driving on two-1ane or divided highways.

Female drivers were more likely to recall safety hazards than males. However, they defined safety hazards differently. Male drivers tended to consider slow vehicles as hazardous whereas females drivers were quite diverse in their hazard identifications. Male drivers were more likely
ro recall having passed a wide load although female drivers were more likely to consider mobile homes as being a common problem vehicle.

Older drivers were more likely to recall passing a wide load but less likely to consider the encounter a problem or, in fact, to consider any type of vehicle a problem. Younger drivers tended to name hazards more readily.

Drivers of automobiles were bothered by mobile homes because of their slowness. They were also bothered, in general, by trucks. Truck drivers, however, tended to say they were given more problems by cars, campers, and mobile homes.

Persons who recalled passing a wide load were more likely to recall encountering delay and encountering hazardous situations. However, the cause of the delay or the hazard was generally not the mobile home. This probably just signifies that the drivers who were alert enough to recall passing the wide load were also alert enough to recall other situations they had encountered. Finally, the drivers who recalled having passed a wide load were more likely to mention mobile homes as the type of vehicle which causes problems in general. They were also more likely to mention other cars in this category.
b. On-site responses of two-lane drivers (Table G-7): Twolane highway drivers on business trips were more likely to recall a delay and more likely to recall a wide load. This is just the reverse trend from that observed of divided highway drivers. The two-lane drivers on business trips were more likely to mention mobile homes, sport cars, campers and trailers as problem vehicles whereas other drivers tended to mention trucks, buses, other cars or no particular vehicle type. High mileage drivers were more likely to recall delays and wide loads, and to consider trucks, mobile homes, campers and trailers as problem vehicles. Low mileage drivers tended to not mention any particular vehicle type.

Drivers who usually are on business trips were more likely to have observed delays and to consider mobile homes, sports cars, and single unit trucks as problems. Persons whose driving is mostly not for business purposes tended to consider other cars as problems more frequently than did business trip drivers.

Persons whose driving is usually on two-lane roads were less likely to have observed a mobile home, but if they did observe one it tended to cause problems because it was moving too slow. Two-lane drivers who normally drive on divided highways were more likely to recall a wide load. They also tended to consider other cars and single unit trucks as problem vehicles.

Male drivers were more likely to recall a safety hazard and more likely to recall passing a wide load than female drivers. Males tended to consider sports cars, single unit trucks, campers, and trailers as hazardous more often than did females, who tended to put other cars and busses in this category.

Younger drivers were more likely to recall delays, safety hazards, and wide loads than older drivers. Older drivers were more likely not to consider any particular vehicle type as being a problem, with the possible exception of single unit trucks. Young drivers, however, were more apt to mention mobile homes and other cars as being problems.

Truck drivers were more likely to recall delays than passenger vehicle drivers. Moreover, the delay to a truck driver tended to be because of a slow vehicle. Automobile drivers were more often bothered by construction projects as a cause of delay, although truck drivers viewed construction projects as a safety hazard. Neither automobile drivers or truck drivers were more likely to have recalled seeing a wide load, although of those who did, the truck drivers were more often bothered by its slowness whereas passenger vehicle drivers were bothered for a variety of reasons. Truck drivers on two-lane roads tended to consider other truck drivers and mobile homes as being problems in general, whereas automobile drivers tended to think of other automobiles as being problems.

Two-lane highway drivers who recalled having recently passed a wide load were more likely to have recalled delays and safety hazards but, in consonance with similar divided highway drivers, the named delay causes and safety hazards were not the mobile homes. Finally, the drivers who recalled passing a wide load tended to name sports cars, other cars and single unit trucks as generally the most troublesome, whereas other drivers were more likely to mention semis.
c. Mail-back responses of divided highway drivers (Table G-8):

There were no significant differences associated with the purpose of the present trip although the "usual" trip purpose was important. People who usually drive for business purposes tended to consider trailers as both hazards and impedances on two-lane roads, and trailers, campers, and mobile homes as impedances on Interstate highways. They were more likely to say that no vehicles should be banned from two-lane roads, however, as compared to other drivers. The other drivers were more likely to suggest that mobile homes, trucks, and campers should be banned from two-lane roads and that, in particular, trucks were a hazard and an impedance factor on two-lane roads. They also felt that single unit trucks create delays on Interstate highways. In general, nonbusiness drivers considered trucks as problem vehicles more frequently than did business drivers, who were more likely to name cars, campers, motorcycles, and busses in this category.

High mileage drivers were more likely to think that cars pulling trailers were the major problem vehicles, than did low or moderate mileage drivers, who put semis in this category. The high mileage drivers also were more likely to consider mobile homes and cars pulling trailers as causing delays on Interstate highways whereas other drivers were more likely to name single unit trucks in this regard.

Drivers who do most of their driving on divided highways were more likely to suggest banning mobile homes from two-lane roads than were other drivers. They also were more likely to name trucks and cars pulling trailers as causing delays on this type of facility. Other drivers, however, were more likely to be either more tolerant or noncommittal, with a disposition to not name any particular vehicle types in these categories.

No significant differences could be noted in the mail-back responses of divided highway drivers attributable to sex or age. And the only difference attributable to having seen a wide load on the present trip was a marginal tendency for such drivers to more frequently suggest banning mobile homes from Interstate highways.

The type of vehicle driven by the motorist was the most discriminating variable of those studied. Truck drivers were generally more likely to be concerned with cars pulling trailers and campers as safety hazards. They were also more likely to mention campers as the vehicle type causing the most problems. However, they were more predisposed to not banning any vehicle types from any type of highway. Passenger vehicle drivers, on the other hand, tended to mention both single unit trucks and semis as being hazards and problem makers. They were also more likely to suggest that semis be restricted in their use of the Interstate highway system and that they be banned entirely from two-lane highways, along with mobile homes. Undoubtedly, the strong influence of vehicle type on the respondent's answers also interacted with the other variables such as trip purpose and driving experience.
d. Mail-back responses of two-lane highway drivers (Table G-9): The responses of this group showed greater dependence on the driver stratifications than did the responses of the divided highway group. Drivers on business trips were more likely to consider mobile homes and farm equipment as causing delays on two-lane highways and to suggest they both be banned on Interstate highways. Other drivers were more likely to place semis in these categories. Drivers on business trips were more likely to consider campers and mobile homes as being problem vehicles in general, whereas other drivers were more likely to mention semis, motorcycles, and other cars.

Low mileage drivers appeared overly concerned about trucks. They were more likely than other drivers to suggest banning trucks on Interstate highways and, alcng with mobile homes, to consider trucks as safety hazards on the Interstate system. They had a tendency to name trucks and motorcycles as being problem vehicles in general, whereas high mileage drivers had a tendency to mention campers and trailers. High mileage drivers were more likely than others to say that no vehicles presented a safety hazard on the Interstate system, but that campers and mobile homes cause delays on two-lane highways. They were also more likely to suggest banning mobile homes on the Interstate system.

Drivers who usually drive for nonbusiness purposes were overly troubled by semis on two-lane highways. They tended to mention them as safety hazards and as impedances, more than did other drivers. They were more likely to say that trucks were, in general, problem vehicles and that they should be banned on two-lane highways. Drivers who usually drive for business purposes were more apt to consider mobile homes as both safety hazards and as impedances on two-lane highways. Also, they were more apt to mention single unit trucks as safety hazards and farm vehicles as impedances than did other drivers.

Two-lane motorists who do most of their driving on divided highways were more apt to consider trucks as the type of vehicle causing delay on Interstate highways, and as vehicles which should be limited in their use of the Interstate system. Persons most used to two-lane driving, however, were more likely to consider motorcycles as a vehicle type which should be limited in Interstate highway usage. Two-lane drivers were also most apt to say that no vehicles should be limited in their usage of the Interstate system. Drivers whose experience tended to be rather general, covering local streets, two-lane highways, and Interstate roads about equally, were most apt to say that mobile homes should be limited on the Interstate system, but that no vehicles cause delay on these highways.

Male drivers were more likely than females to say that no vehicles were a safety hazard on the Interstate system, and that other automobiles were a safety hazard, whereas females were more likely to place motorcycles in this category. Similarly, males tended to say that no vehicles were impedances on the Interstate system or that campers caused delay. As far as causing problems in general, females were more likely to mention motorcycles first, and to rate them along with trucks very highly. Males were more likely to mention campers or other autmobiles as being problem vehicles.

Young drivers were more likely to say that mobile homes were a safety hazard, both on Interstate highways and on two-lane highways, than were other drivers. Older drivers tended to mention campers and single unit trucks as safety hazards on the Interstate system and other cars or no vehicles on two-lane highways.

Automobile drivers were more likely than pickup or truck drivers to say that trucks were problem vehicles. Compared with other drivers they were more likely to name trucks and trailers as being hazardous on the Interstate system, semis as being hazardous on two-lane highways, trucks as causing delays on both Interstate and two-lane highways, trucks and mobile homes as vehicles to be banned from two-lane highways, and trucks and farm vehicles as the number one problem vehicles. Pickup truck drivers tended to consider other cars as being safety hazards more than did other drivers; they also were more likely to mention other cars as being general problem vehicles. Single unit and semi truck drivers, however, responded differently. They were most likely to say that no vehicle should be banned from the two-lane highways and that no vehicles cause delay on the Interstate system. They tended to say that campers were a safety hazard on the Interstate system and that mobile homes cause delay on two-lane highways. As problem vehicles they were more likely to mention cars pulling trailers, slow vehicles and campers.

Drivers interviewed on two-lane highways who had recently passed a wide load did not respond to the mail-back questionnaire in a different fashion than did other drivers.

## APPENDIX H

SELECTED COMMENTS FROM MOTORISTS

Task C involved obtaining motorists' opinions and attitudes regarding mobile homes on the highway. This was accomplished by conducting surveys in six states, at approximately 18 interstate and two-lane road locations. Nearly 3,000 people were interviewed and their responses analyzed. That data is contained elsewhere in this report.

The motorists were also given a mail-back form which they were asked to complete and return. Approximately $30 \%$ of the motorists did so. In addition to the questions included on the form, space was provided for general comments. About one-fourth of the respondents took advantage of that opportunity.

Most of the comments do not relate specifically to the contract objectives. However, they do represent a wide and interesting cross-section of public opinions regarding many facets of traffic safety. Therefore, it was decided to include a selected sample of these comments here for the interested reader, even though they don't impact the project conclusions. The selection was not random; rather the comments were chosen to typify the categories of responses obtained. The relative numbers included on each subject are roughly proportional to the total number of comments received.

The comments were reproduced verbatim from the questionnaires, except that spelling corrections have been made. Occasionally, we have inserted a word or two, in brackets, for clarification.

The responses have been grouped into seven major categories. Category 1 involves negative comments concerning wide loads. We were rather surprised to receive so few comments in this regard because, although the respondents were not told that the subject of interest was mobile homes, the final question(s) during the interview process did explictly address this subject.

The second category is representative of the many comments received regarding other types of vehicles. The comments are further grouped according to vehicle type--trucks, farm equipment, buses, campers and other trailers, old vehicles, sports cars, motorcycles, bicycles, and police cars.

Generally speaking, however, most comments did not specifically relate to types of vehicles. Many persons commented that it was the speed (or lack thereof) of vehicles that was hazardous. Some of these coments are included in Category 3. Comments of a closely related nature are in Category 4. A surprisingly large percentage of the respondents commented that the problem is the driver and not the vehicle. What they were saying in effect was that, in their opinion, our survey was asking the wrong questions.

The fifth category is composed of miscellaneous suggestions and comments regarding the highway system and suggestions for improvement. Within this category the first subgroup expressed negative opinions about further highway expansion. The second subgroup expressed pro-highway feelings. Following these are comments concerning highway improvements, driver improvements, vehicle inspection and signing.

The third and fourth questions on the mail-back questionnaire regarded restricting highway usage for certain classes of vehicles. Several respondents commented that no vehicles should be restricted. Category 6 is representative of these comments.

Finally, we received three negative comments concerning the survey itself. These are in Category 7. The first of these comments, we believe, simply reflects the difference in attitudes concerning surveys among various jurisdictions. Many states, in fact, prohibit by law the stopping of any motorists for any type of survey. In the state in which this particular respondent was stopped the signing and traffic control was conducted in accordance with the printed procedures of that state. These procedures included the use of large ( 4 ft by 8 ft ) electric flashing arrows. A highway department employee was on site and assisted in placement of the signing, etc., and in traffic control. Also, a state highway patrolman was assigned full-time to work with the survey crew.

The second comment in the group was the only one critical of an interviewer. The interviewers were instructed, if asked about the purpose of the survey, to simply answer that the survey deals with traffic and traffic safety. To minimize respondent bias, they were not to say that this was a mobile home or wide load survey. However, the last question asked of the respondent does address the subject of mobile homes and could have given that respondent a negative impression. Since he was the only respondent to express that view, we are of the opinion that most motorists did not receive this impression.

1. Wide Loads

We just returned froma 2 -week trip to Oregon. We nearly had a very bad accident. A mobile home being transported was holding up traffic, a van was trying to pass the line and lost control coming down a hill--we were meeting the line of cars and he barely missed us by pulling over on the shoulder of the road.

$$
\dot{x} \dot{x}
$$

Pilot cars for mobile homes are not necessary on either four-lane or two-lane highways except in a few mountainous areas with inadequate roads to begin with. They do nothing but contribute to the congestion of a twolane highway and in my opinion create more hazards than they are meant to prevent. Anyone that can't see a $14-\mathrm{ft}$ wide load with flashing lights has no business driving so it does not appear that a pilot car is really adding anything to public safety.

## * * *

My reasons against "large mobile homes transported by truck" are that $I$ was once pushed off the road when one approaching in the opposite direction missed a curve. Often this sort of thing happens; the drivers do not seem cautious or courteous.

## * * *

I feel that the most hazardous [vehicle] is the large mobile home carrier and that they should not be allowed on two-lane roads unless there are adequate turn offs or extra lanes for slow moving vehicles on hills and curves. Also, pickups with these high over-sized campers on them are real bad--you can't see around them or through them and they are usually under powered so that on hills they slow way down. These vehicles should be outlawed from narrow two-lane roads that don't have proper turnouts for slow traffic.

```
* * *
```

Would like to see everything put back to 8 ft width or else wider highways. I think wide farm equipment and large trailer homes cause the most hazards. Nebraska highways have not kept up with their permits with wider loads.

Large multiunit trucks and large mobile homes being transported by truck are hazards, in my opinion, when several seem to be traveling in groups. Passing them, or being passed by them can be pretty hair raising in areas such as ours where frequent winds can be a problem. Also, they send out a heavy spray from their wheels when pavement is wet. This can blind another driver. Motorcycles area problem, as so many of the riders are careless about cutting in and out of traffic, and because they could upset easily by hitting a rough spot or fallen rock. To be quite truthful-they scare the hell out of me!

*     *         * 


## 2. Other Vehicles

## a. Trucks

There are far too many large trucks on the highways. They also have the habit of bunching together. Today I passed five in a row about 80 or 90 ft separating each truck at 70 mph .

The mobile homes seem pretty rocky on a windy day. I believe the speed limit is too high. I find about three out of six vehicles are in excess of the 70 mph limit part of the time. High speed is hurting our fuel shortage.

## * * *

If feel that tractor trailers running too close together and playing tag with one another (I mean taking turns passing each other) is the most hazardous, and the most disgusting, thing that happens on the road, also cars driving 70 and 80 mph in the right lane and slower traffic in the left lane.

I like to drive around 60 and seems like I'm always in the way even if I'm in the right lane. Everyone is always snarling as they pass me. Thank you.

> * * *

Large semi-trucks should not be allowed to use highways in congested areas during the time people are going to and from work. Example from 6:30 to 8:00 a.m. in the morning and $4: 30$ to $6: 00 \mathrm{p} . \mathrm{m}$. in the evening.

Also, passenger buses should all have pull out areas for loading and unloading of passengers.

Small sports cars and passenger cars should not be allowed to change lanes indiscriminately (at their whim).

Large semi-trucks present problems on our roads. During rain when following or passing on either side of the road a semi can send off enough spray onto a passenger car windshield as to interfere with visability. Also, many exceed the posted speed limit. I'm all for interstate transport but they must be aware of the problems the large semi's cause.

```
* * *
```

1. Trucks, including single axle, multiple axle and semi's have gotten too large for the roads, they overpower the average passenger car when passing or being passed.
2. Motorcycles are too dangerous to their riders and are too small to be seen easily, they should be prohibited from travel on public roads except for emergency use.

> * * *

Trailer towing vehicles should have a minimum towing vehicle weight and horsepower. A ratio per ft and weight should increase weights and power for larger trailers.

Slow moving vehicles should be forced off the highway by law when three or more vehicles are in following procession.

Passing lanes on uphill traffic should be used by passenger cars only.

Accidents involving speeders should be investigated to see why driver was speeding. I feel fast drivers are being penalized for impatient drivers and careless drivers.

## * * *

I am glad to know that someone is interested in how I feel driving on interstates and two-lane roads. We have a Volkswagon "bug", and the smallness of the car makes it very susceptible to wind draft. Huge trucks roaring down on me and passing me on h'ills is even worse. The larger Winnebagos also cause a problem as do cars towing trailers, their drivers seem often not to know how to handle them. I also deplore coal and lumber trucks. I swear they aim at Volkswagons.

*     *         * 

I think all trucks hauling gravel, corn, grain, etc., should be covered. There is no way to protect yourself on a two-way highway from this type of oncoming vehicle.

# Trucks and cars with trailers are becoming more difficult 

 to pass.$$
* * *
$$

## b. Farm Equipment

I drive $50,000+$ miles per year and most of this mileage is on two-lane highways. The biggest hazard I run into are farm tractors and other farm related vehicles which move at speeds less than 30 mph . Such vehicles should have hazard lights mounted at least 10 ft above them so they can be seen at a distance, particularly in hilly country. Slow drivers on the interstates are also a real hazard and the highway patrol should watch for them as much as speeders.

$$
* * *
$$

Many times I find farmers with their tractors, combines, etc., on two-way highways that cause considerable problems. It seems like there are becoming more and more cases where they are using the highway and they don't always pull over to the side where space is available.

I also noticed that so many drivers on the interstate system insist on driving in the left hand lane when they are not passing. This is a serious problem and quite often I feel like stopping them and asking what their reasoning is. (Passenger cars.)

My wife feels people should be instructed more on the use of their turn signals when passing. (All highways.)

$$
* * *
$$

I am a farmer near Blair, Nebraska. I would like to see all farm equipment used on highways and county roads day or night use a flashing amber light. This should be a state law.

Thank you.
P.S. your highway crew were very polite.
c. Buses

Passenger buses drive too fast and take too many chances on two-lane roads, semi-trucks are too slow and hard to pass which make people take chances.

Slow moving vehicles are more of a hazard than the one going 5 or 10 miles over speed limit as they.also make people take chances.

$$
* * *
$$

d. Cars Towing Trailers

The reasons for feeling that $H$ (cars towing trailers) is such a safety hazard is because they are not equipped with stable enough suspension or braking system which in turn makes it a highway menace.

$$
* * *
$$

Passenger car drivers who have never had experience driving tractor trailers seem to be the biggest hazard on truck-laden interstate highways.

Women drivers, unfamiliar with large vehicles such as selfcontained campers, cars towing trailers, attempting to drive these vehicles present the greatest hazard on any highway.

Call boxes should be installed every night on all interstate highways and those two-lane highways in undeveloped sections. (hooboy!! there goes our taxes)

## * * *

People that are going to use a self-contained camper should have to have the equipment checked to make sure the hitch and sway bars are heavy enough to handle the unit.

People who use the highway's with these campers should have to take a test in this unit to make sure they can handle the unit in a safe way so they won't get themselves into trouble on the highway.

As a tractor trailer driver $I$ have to see people who don't know how to handle themselves in traffic, this also includes people who think that they are the only ones on the highway. They cut in and out of traffic, tailgate, and mostly the people who travel too slow on super highways, they are also a lot of people who like to play chicken on the roads with tractor trailers, this is stupid and when their number is turned into the police they should be taken to court and have their license taken for a l-year period.

$$
\begin{gathered}
* * * \\
H-8
\end{gathered}
$$

Pickups with campers and cars towing boats, camper trailers etc., should have their own roads to travel or at least a special lane, also $F$ (tractor trailers) should. It makes my blood boil to get behind one of these on a two-lane road that's hilly enough you can't pass them for miles and you have a deadline to meet. I'm glad for this survey!!! Sure hope it will help.

## * * *

The growing use of recreational vehicles is a threat to the safety of all. Repeatedly I encounter such vehicles--often improperly loaded--worst of all carrying loads never designed to be pulled, i.e., "campers," with a canoe on top, motorcycles on the rear, pulling a large boat! They weave all over--crawl up grades--are difficult to pass. Strict regulations and enforcement of load limits is needed--their braking and steering capacities are a nightmare, especially with nonprofessional drivers.

```
* * *
```

e. Old Vehicles

Old pickups seem to be exempt from rules regulating lights, signal and running--noise, exhaust, tires and brakes, load, windows broken or obstructed mirrors, windshield wipers, mufflers--etc. I couldn't get out of the city if my car was in the condition of some of the pickups I've seen on our trip.

## * * *

I feel most accidents and hazards are caused by vehicles in improper state of repair, inspection should be more closely observed, spot checks, etc. . ., and get unsafe vehicles off roads.

## * * *

## f. Sports Cars

Sports cars are a safety hazard as most No Passing lines and signs are designed for a taller auto.

> * * *

## g. Motorcycles

I think cycles should not be on interstate highways. They zip in and out of traffic and they are hard to see from a distance. Whether day or night you must get close before you see them. Especially coming off of the exit ramps.

[^9]I drive a truck for a living, about 75,000 miles a year. Motorcycles are very hard to see ahead and behind. The compact cars are hazardous. They try to pass when there isn't room and they don't have the speed required. Farm equipment is a definite hazard. Too many operators will deliberately pull out in front of a fast moving vehicle expecting the car to yield with no notice. They are too long, too wide and too slow.

*     *         * 


## h. Bicycles

Bicycles are a great hazard on any highway. Bicycles should use all caution as any other vehicle. Should operate bicycles in same direction as other traffic on all highways and streets.

```
* * *
```


## i. Police Cars

State police [cause the most problems for other drivers] when they come onto highway everyone else puts on brakes and slows down.

```
* * *
```


## 3. Slow Vehicles

I feel the slow driver should be penalized as well as a speeder. A slow driver tends to make other drivers worse drivers because of taking unnecessary chances to pass.

I would like to see the penalty for drunk driving really stiffened, and prosecution done speedily.

Thank you.

> * * *

The biggest problem on any highway is the slow driver who won't drive with the flow of traffic and doesn't have sense enough to pull off the road long enough to let the traffic behind him pass.

On the two-lane highway this is asking for trouble if you try to pass. On the interstate it's the slow driver himself who may get hit from the rear. I think unless you drive at least 60 mph on an interstate you should be forced by law to stay in the right lane as you are in many states that have steep grades. This helps to keep the traffic flow normal and is less danger of rear end collision for the slow driver.

```
* * *
```

    H-10
    Slow moving vehicles (usually a car) that will not pull over, and you have a line-up and someone three or four cars back tries to pass. Cars will not pull over--even on the freeway. They'll get in that fast lane and will not pull over or speed up, you can honk, or pass on the right (like a lot do) and he still stays right there. I see a lot of speedsters stopped, but no slow cars. Semis are bad on two-lane and likewise school buses-they are terrible.

We need separate bike paths along the same roads and more respect to bike and cycle riders.

## * * *

I feel slow moving vehicles should have to meet a minimum speed of not less than 45 mph on two-lane roads and 55 on interstate highways-or not be allowed on the roads.

I feel farm machinery should be hauled on trailers, etc., instead of being driven and there should be a width limit on such equipment. If they must use the roads they should at least have the courtesy to get as far off the road as possible.

*     *         * 

When you are driving on open road speed limit and come to an intersection and a Volkswagon pulls out and goes 30 miles an hour or even in town and you are doing speed limit 35 or 25 and a small car pulls in front of you and goes 10 or 15 mph and you have to slam on your brakes to keep from tail ending it. I have wanted to sound off about this for years. Thanks for the opportunity.

> * * *

## 4. The Driver

Vehicles are not hazardous--the driver behind the wheel is the menace on the highway, any highway. Drivers from different states are more hazardous than others. New York and New Jersey head my list followed by Michigan, Massachusetts, Illinois and Florida. Take the drunken driver from behind the wheel and I mean all drunken drivers not just a select few who have no friends at city hall to intercede for them. Remove the gung-ho truck drivers who tailgate when they think the car in front of him is not going fast enough. Get rid of the immature driver of both sexes who think the roads are their private domain and to hell with everyone else.

As I said in the beginning, vehicles are not hazardous, it is the weirdo in back of the steering wheel.

*     *         * 

I believe that we should educate the nut behind the wheel by stiff requirements for being able to drive, also, it should be a mandatory loss of license if proven he had been drinking beyond the certain level. Vehicles themselves cause very, very few accidents but the driver is where you should be concerned. No-fault insurance will make the poor driver worse because he then wili not be responsible for accidents.

*     *         * 

My comments may not be to your point--however we just completed a 2,400 mile vacation trip using all types of roads and meeting all types of vehicles. I feel that the greatest hazard is not the type of vehicle-but the way it is driven. Drivers with full awareness of their vehicles' capacities and considerations for the other vehicle user on the road-present very few hazards. To exclude, or permit use of road at certain times, to large or slow vehicles, may increase the hazards of speed, etc., to other vehicles. Motorcycles are very difficult to spot while looking for cars--and could be dangerous. I have great respect and confidence in "semi" drivers and bus drivers on interstate roads.

> GOOD LUCK!

*     *         * 

While the questionnaire concentrates on "vehicle" it has been my experience in over 45 years of driving that the greatest hazard is not the type of vehicle as much as the driver of the vehicle. Skipping the drunken driver, which is recognized as a universal menace, the others that I consider the greatest problem are: the too slow driver that holds up long lines of traffic when it is possible for him to pull over and allow the normal flow of traffic to pass him; and the too fast driver, that takes unnecessary risks, especially in passing. He passes on blind curves and on hills that he cannot see traffic coming from the other direction, and many times I've been forced off the road to keep from hitting such vehicles "headon." Although this questionnaire is about highways, I have a special resentment against the nit-wit who uses the parking lot of a busy shopping center to show off how fast his new car (or jalopy) will go. With this type of infantile thinking, they are found to be a hazard on the highway-any highway and vehicle.

## a. Anti-Highway

The interstate highway system should not be expanded further. The money should go for subsidies for mass transit, buses, trains. Highway building is self-aggravating.

## * * *

I am paranoid about driving today. Accident statistics are frightening. I worry about insane maniacs that fail to comprehend serious accidents, and consequently, endanger the lives of others. I also find myself worrying about going 5 mph over or under the speed limits, crossing the line and failing to come to a complete stop. I seem to be on the watchout for patrols, especially in urban areas.

I really don't like to drive; but what choice do I have? Autos run a person off the road if one chooses to ride a bicycle or motorcycle. Why can't half the taxes being spent on highway development be spent on developments of more extensive passenger railroads. Better use of energy, less accidents, no litter and easier maintenance. At least people would have a choice!

## * * *

America had railroads for the use of transporting heavy, bulky cargo. Why do we now have all this on any and all highways at all times of the day all times of the year?

In my opinion this heavy cargo on highways not only creates a safety hazard but costs the American tax payer lots of money in road repairs. There are too many of these trucks driving too close together with we own the road attitude.

$$
* * *
$$

## b. Pro-Highway

We travel a lot from coast to coast and have had very little difficulty. The roads are wonderful!

I feel our highways are generally safe and in good condition and would be far safer if motorists would only drive with extreme caution and not speed--more people try to pass (with high speed, when it is not possible to see far enough ahead.)

I am in favor of reducing the speed limit down to 50 or 55 miles per hour (nation wide).

*     *         * 


## c. Highway Improvements

As a sales representative who stays on the road 5 days a week, I would like to see more rest stops along our highways in the South. Just a place to pull into, stretch and continue the journey without having to pull off on exits and waste time. You can frequently check your tires, clean windshields, etc., adding to safety on the highways.

## * * *

I recently made a trip by car from Groton, Ct. to Clearwater, Fla. It was a fairly good trip except for two things: (1) in certain areas a definite lack of good rest areas and (2) there was debris on the highway itself and the shoulder. This was mainly tire rubber but I did encounter two small pieces of wood on the road itself. Had I been traveling at night following a large truck or about to pass, this wood could have been flung up at me causing a bad accident. I would suggest that roads be kept clear of debris daily and that all trucks carrying loads be covered securely no matter what they are carrying or how far.

I followed a tractor trailer hauling lumber and it looked like a small tornado running down the road. Leaves, bark, dirt and small pebbles were flying along behind it.

## * * *

I think all (federal and state) numbered two-lane highways should at least be improved to have a 10 ft wide paved break down lane on each side which could also double as a bicycle lane, because bicycles traveling in the main roadway lanes are a serious hazard to both motorist and cyclist. This improvement could be made at minimal expense by accepting existing line and grade except where obviously hazardous and many times more miles of roadway could thus be improved than is being done at present and also eliminate the need for separate bicycle paths.

Driving tractor trailers 65,000 miles per year for the previous 15 years - I feel more emphasis should be put on driver training and retraining of all age groups -

Vehicle safety should sacrifice style and beauty for ruggedness, suspensions, steering, etc -

No one should be forced by law or any system to wear seat belts.

$$
\not \approx * *
$$

I would prefer to make a positive comment, which is this: I have taken the $8-h r$ course in defensive driving, given by the N.H. Department of Safety. I have learned to anticipate danger possibilities and I have learned to be patient, an essential attribute for a good driver. I would suggest that this course be offered EVERYWHERE!

The vehicles do not cause problems, but it is the drivers of the vehicles that cause the problem. One suggestion $I$ have is specifically for drivers of self-contained campers and pickup campers. Many drivers of these vehicles are inexperienced at handling them and they need training. As truck drivers are trained for their type of vehicle and motorcyclists hold a special and additional license in some states, so also many inexperienced camper drivers need training. This training should be provided by private enterprises not the government?

In addition, I would be interested to know the cost to the people of this traffic survey.

$$
* * *
$$

## e. Vehicle Inspection

Some states do not require a semi-annual or annual inspection of motor vehicles. In as much as the Federal Government is requiring antipollution devices, why not set a standard for inspection of vehicles using the interstate highway system and require a sticker for verification of inspection.

In 4,166 miles of traveling in 29 days, movement of large mobile homes and older model autos in poor condition were the most frequently encountered delays or safety hazards.

Thanks for the good roads.

```
* * *
```


## f. Signing

We don't think the highways have enough markers on them. Sometimes we went 5 or 6 miles before we saw a sign. There definitely aren't enough signs in the large cities. Maybe we are country hicks $I$ don't know.

$$
* * *
$$

The gentleman who conducted the first half of this survey was most courteous and friendly.

I have just driven 10,800 miles over 14 weeks, from California to Nova Scotia and am returning to California now. I found Connecticut the best on highway signs, California is the safest due to the reflectorized color-keyed highway buttons, which give visual and audial warnings as well, since they make a "bump" sound when driven over. I am a 41 year old widow, not afraid of traffic. Pennsylvania has a very good system requiring vehicles to use a distress blinker when traveling under the minimum speed.

$$
* * *
$$

## 6. No Restrictions

I do not feel that any legal vehicle should be prohibited from operating on our highways (federal, state, county, twp, etc.). Large loads when properly handled are not a hazard to other traffic. It is the drivers of vehicles who are hazards or create hazardous conditions.

$$
\star * *
$$

I don't think it would be fair or possible to limit certain types of vehicles on most roads unless weather is a factor.

Also - we ride a motorcycle on trips and believe me, we watch out for the other guy! Also - we try to wear light, bright clothing so as to be more easily seen.

> * * *

All vehicles buy gas and paying their share of road tax should be allowed to use all roads. (No snowmobiles - lawnmowers.)

```
* * *
```


## 7. Survey Criticisms

Aside from highway construction which could not be avoided, the most dangerous safety practice $I$ observed on my coast to coast trip was your survey position. As a professional Law Enforcement Officer, had I had the jurisdiction, $I$ would of filed criminal charges against the survey party. There was insufficient warning, and no justification for stopping interstate traffic. Might I suggest, a survey team simply jot down license plate numbers without stopping the traffic and using the LETS System, obtain the registration data, mailing the registrator a letter requesting the data. If that is unworkable, why not interview all personnel pulling into a rest area - but NEVER stop all the vehicles on an interstate highway!!!!!

I have strong feelings that "extra wide and long" travel trailers, mobile homes would be a better term, and dual-trailer rigs should not be allowed on anything but divided highways, and then only during daylight hours when escorted. Dual-trailer rigs should be prohibited from any highway as they are just too hard to safely pass. Of course, until the Interstate Highway System is completed, this would be an impractical regulation for mobile home owners/dealers, to limit them to four-lane or larger roads.

```
* * *
```

- Would like to know the purpose of questionnaire.
- Roadside pollster gave a slanted view against large mobile homes.
*     *         * 

Campers, truck trailer, and etc., have the right to use our highways at anytime--roads should be made to have passing lanes.

Our gas taxes and etc. are enough now.

Some of your stupid questions and surveys are a waste of time and money.

*     *         * 





[^0]:    Delaware - Pennsylvania
    C-13

[^1]:    Border Combination
    From $-T_{0}$
    Virginia - West Virginia

[^2]:    * The impracticality of making passing/queuing observations on all trips is clarified later when these observations are discussed.

[^3]:    * On two trips the data were collected when both observers were riding in a rear escort.
    ** Only cameras 1 and 2 are represented. No trips were made with the emergency stand-by camera (camera 3 ).

[^4]:    * Occasionally no measurement could be obtained because the vehicle did not appear in the frame. This happened for instance, when the wide load encountered uneven pavement and the camera temporarily went off target.

[^5]:    * This width is not always well-defined since many windshields have rounded corners. However, we retained an interest in this measure because it was quite frequently more visible in the film than other vehicle features, particularly at large distances. Published by The Automotive Index, Lancaster, California.

[^6]:    * Published by The Automotive Index, Lancaster, California.
    ** If the data were simply categorized by make, model and body style, much unnecessary measurement and tabulation would be required and the process would be prohibitively expensive.
    *** Typically a category was comprised of a make-model(s) combination.
    $\ddot{*} 2 * \%$ These distances were required so that calculated distances to the photographed vehicles could share a common reference which we chose to be the plane containing the headlights (i.e., the "front" of the vehicle).

[^7]:    * All referenced equations in this appendix refer to the cost analyses in Volume I, Section IV-B.
    ** Quadratic curve fits were computed for the curves in these figures to facilitate programming. Some of the curves were fitted in two pieces, i.e., two curve fits were computed, each covering part of the total range.

[^8]:    * The curves of Figures 18 and 19 were curve fitted to facilitate programming.
    ** This time delay (or gain) and corresponding cost is very small per individual maneuver. However, the costs are additive and the maneuver occurs repeatedly during multilane trips so the term was retained in the formulation.

[^9]:    *     *         * 

